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ABSTRACT

Sigma clipping is commonly used in astronomy for outlier rejection, but the number of standard
deviations beyond which one should clip data from a sample ultimately depends on the size of the
sample. Chauvenet rejection is one of the oldest, and simplest, ways to account for this, but, like
sigma clipping, depends on the sample’s mean and standard deviation, neither of which are robust
quantities: Both are easily contaminated by the very outliers they are being used to reject. Many,
more robust measures of central tendency, and of sample deviation, exist, but each has a tradeoff
with precision. Here, we demonstrate that outlier rejection can be both very robust and very precise
if decreasingly robust but increasingly precise techniques are applied in sequence. To this end, we
present a variation on Chauvenet rejection that we call “robust” Chauvenet rejection (RCR), which
uses three decreasingly robust/increasingly precise measures of central tendency, and four decreasingly
robust/increasingly precise measures of sample deviation. We show this sequential approach to be
very effective for a wide variety of contaminant types, even when a significant – even dominant –
fraction of the sample is contaminated, and especially when the contaminants are strong. Furthermore,
we have developed a bulk-rejection variant, to significantly decrease computing times, and RCR
can be applied both to weighted data, and when fitting parameterized models to data. We present
aperture photometry in a contaminated, crowded field as an example. RCR may be used by anyone
at https://skynet.unc.edu/rcr, and source code is available there as well.

Subject headings: methods: statistical — methods: data analysis

1. INTRODUCTION

Consider a sample of outlying and non-outlying mea-
surements, where the non-outlying measurements are
drawn from a given statistical distribution, due to a
given physical process, and the outlying measurements
are sample contaminants, drawn from a different sta-
tistical distribution, due to a different, or additional,
physical process, or due to non-statistical errors in mea-
surement. Furthermore, the statistical distribution from
which the outlying measurements are drawn is often un-
known. Whether (1) combining this sample of measure-
ments into a single value, or (2) fitting a parameterized
model to these data, outliers can result in incorrect in-
ferences.

There are a great many methods for identifying and ei-
ther down-weighting (see §2.1) or outright rejecting out-
liers. The most ubiquitous, particularly in astronomy,
is sigma clipping. Here, measurements are identified as
outlying and rejected if they are more than a certain
number of standard deviations from the mean, assum-
ing that the sample is otherwise distributed normally.
Sigma clipping, for example, is a staple of aperture pho-
tometry, where it is used to reject signal above the noise
(e.g., other sources, Airy rings, diffraction spikes, cosmic
rays, and hot pixels), as well as overly negative devia-
tions (e.g., cold pixels), when measuring the background
level in a surrounding annulus.

Sigma clipping, however, is crude in a number of ways,
the first being where to set the rejection threshold. For
example, if working with ≈100 data points, 2-sigma de-
viations from the mean are expected but 4-sigma devia-
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tions are not, so one might choose to set the threshold
between 2 and 4. However, if working with ≈104 points,
3-sigma deviations are expected but 5-sigma deviations
are not, in which case a greater threshold should be ap-
plied.

Chauvenet rejection is one of the oldest, and also the
most straightforward, improvement to sigma clipping, in
that it quantifies this rejection threshold, and does so
very simply (Chauvenet 1863). Chauvenet’s criterion for
rejecting a measurement is:

NP (>|z|) < 0.5, (1)

where N is the number of measurements in the sample,
and P (>|z|) is the cumulative probability of the mea-
surement being more than z standard deviations from
the mean, assuming a Gaussian distribution. We apply
Chauvenet’s criterion iteratively, rejecting only one mea-
surement at a time for increased stability, but consider
the case of (bulk) rejecting all measurements that meet
Chauvenet’s criterion each iteration in §5.1 In either
case, after each iteration (1) we lower N by the number of
points that we rejected, and (2) we re-estimate the mean
and standard deviation, which are used to compute each
measurement’s z value, from the remaining, non-rejected
measurements.

However, both traditional Chauvenet rejection, as well
as its more-general, less-defined version, sigma clipping,
suffer from neither the mean nor the standard deviation

1 Some care must be taken here: Since both the mean and the
standard deviation change each iteration, measurements that were
outlying can become not outlying (though the opposite is usually
the case).
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being “robust” quantities: Both are easily contaminated
by the very outliers they are being used to reject. In §2,
we consider increasingly robust (but decreasingly precise;
see below) replacements for the mean and standard de-
viation, settling on three measures of central tendency
(§2.1) and four measures of sample deviation (§2.2). We
calibrate seven pairings of these, using uncontaminated
data, in §2.3.

In §3, we evaluate these increasingly robust improve-
ments to traditional Chauvenet rejection against differ-
ent contaminant types: In §3.1, we consider the case
of two-sided contaminants, meaning that outliers are as
likely to be high as they are to be low; and in §3.2, we
consider the (more challenging) case of one-sided contam-
inants, where all or almost all of the outliers are high (or
low; we also consider in-between cases here). In §3.3, we
consider the case of rejecting outliers from mildly non-
Gaussian distributions.

In §3, we show that these increasingly robust improve-
ments to traditional Chauvenet rejection do indeed re-
sult in increasingly accurate measurements, and they do
so in the face of increasingly high contaminant fractions
and contaminant strengths. But at the same time, these
measurements are decreasingly precise. However, in §4,
we show that one can make measurements that are both
very accurate and very precise, by applying these tech-
niques in sequence, with more-robust techniques applied
before more-precise techniques.

In §5, we evaluate the effectiveness of bulk rejection,
which can be significantly less demanding computation-
ally. In §6, we consider the case of weighted data. In §7,
we exercise both of these techniques with an astronomi-
cal example.

In §8, we show how RCR can be applied to model fit-
ting, which first requires a generalization of this, tradi-
tionally, non-robust process. In §9, we compare RCR
to Peirce rejection (Peirce 1852; Gould 1855), which is
perhaps the next-most commonly used outlier-rejection
technique (Ross 2003). Peirce rejection is a non-iterative
alternative to traditional Chauvenet rejection, that can
also be applied to model fitting, and that has a reputa-
tion of being superior to traditional Chauvenet rejection.

We summarize our findings in §10.

2. ROBUST TECHNIQUES

2.1. Measures of Central Tendency

There are a wide variety of, increasingly robust, ways
to measure central tendency. For example, instead of
the mean, one could use the Windsorized mean, in which
the values in each tail of a distribution are replaced by
the most extreme value remaining, before calculating the
mean. Or, one could use the truncated mean, in which
these values are instead simply discarded. In either case,
such measures are a tradeoff, or a compromise, between
robustness and precision, depending on what fraction of
each side of the distribution is replaced or discarded: If
0% is replaced or discarded, these measures are just the
mean, which is not robust, but is precise; in the limit that
all but one value (or two, if there are an even number
of values in the distribution) are replaced or discarded,
these measures are equivalent to the median, which is
more robust than the mean, but less precise.

In this paper, we are not trying to introduce a com-

promise between robustness and precision. Rather, we
are attempting to have both by applying measures with
differing properties in sequence. Consequently, we limit
this investigation to the three most-common measures
of central tendency, which already have a wide range of
properties: the mean, the median, and the mode, which
are increasingly robust, but decreasingly precise.

The mean and median are calculated in the usual ways:
The mean is given by summing a data set’s values, and
dividing by its number of values, N ; the median is given
by instead sorting these values, and taking the middle
value if N is odd, and the mean of the two middle values
if N is even.

Given continuous data, the mode, however, can be de-
fined in a variety of ways. We adopt an iterative half-
sample approach (e.g., Bickel & Frühwirth 2005), and
calculate the mode as follows. Sort the data, xi, and for
every index j in the first half of the data set, including
the middle value if N is odd, let k be the largest integer
such that:

k ≤ j + 0.5N. (2)

Of these (j, k) combinations, select the one for which
|xk − xj | is smallest. If multiple combinations meet this
criterion, let j be the smallest of their j values and k
be the largest of their k values. Restricting oneself to
only the k− j + 1 values between and including j and k,
repeat this procedure, iterating to completion. Take the
median of the final k − j + 1 (typically two) values.

2.2. Measures of Sample Deviation

As with central tendency, there are a wide variety of
measures of sample deviation. When we use the mean to
measure central tendency, we use the standard deviation
to measure sample deviation: Neither are robust, but
both are precise.

However, when using more-robust measures of central
tendency, like the median or the mode, we need to pair
these with more-robust measures of sample deviation.
For this, we use what we will call the 68.3-percentile de-
viation, which we define here in three increasingly robust
ways.

The first way is to sort the absolute values of the indi-
vidual deviations from the measure of central tendency
(either the median or the mode), and then to simply
take the 68.3-percentile value from this sorted distribu-
tion. This is analogous to the “median absolute devi-
ation” measure of sample deviation, but with the 68.3-
percentile value instead of the 50-percentile value (which
we do to remain analogous to the standard deviation, in
the limit of a Gaussian distribution).

This technique works well as long as less than 40% –
70% of the measurements are contaminated (see §3.1 and
§3.2). However, sometimes a greater fraction of the sam-
ple may be contaminated. In this case, we model the
68.3-percentile deviation from the lower-deviation mea-
surements.

Consider the case of N measurements, distributed nor-
mally and sorted by the absolute value of their deviations
from µ (equal to either the median or the mode). If
weighted uniformly (however, see §6), the percentile of
the ith element is given by:
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Fig. 1.— 100 sorted deviations from the median, all drawn from a
Gaussian distribution of standard deviation σ = 1. The measured
68.3-percentile deviation is also ≈1.

i− 1 + ∆i

N
= P

(
<

∣∣∣∣δiσ
∣∣∣∣) , (3)

where P (<|δi/σ|) is the cumulative probability of being
within |δi/σ| standard deviations of the mean, δi is the
ith sorted deviation, σ is the 68.3-percentile deviation,
and 0 < ∆i < 1 is the bin center. We set ∆i = 0.683 to
yield intuitive results in the limit that N → 1 and µ is
known a priori (§6). Solving for δi yields:

δi = σ

[√
2erf−1

(
i− 0.317

N

)]
. (4)

Consequently, if plotted δi vs.
√

2erf−1[(i − 0.317)/N ],
the distribution is linear, and the slope of this line yields
σ (see Figure 1).

However, if a fraction of the sample is contaminated,
the shape of the distribution changes: The slope steep-
ens, and (1) if the value from which the deviations are
measured (the median or the mode) still approximates
that of the uncontaminated measurements, and (2) if the
contaminants are drawn from a sufficiently broader dis-
tribution, the curve breaks upward (see Figure 2, upper
left).2 Consequently, we model the 68.3-percentile de-
viation of the uncontaminated measurements in three,
increasingly accurate ways: (1) by simply using the 68.3-
percentile value, as described above (e.g., Figure 2, up-
per right); (2) by fitting a zero-intercept line to the√

2erf−1[(i− 0.317)/N ] <
√

2erf−1(0.683) = 1 data, and
using the fitted slope (e.g., Figure 2, lower left); and
(3) by fitting a broken line of intercept zero (see Ap-
pendix A for fitting details) to the same data, and using
the fitted slope of the first component (e.g., Figure 2,
lower right).

2 If the median or the mode no longer approximates that of the
uncontaminated measurements, the curve can instead break down-
ward, making the following three 68.3-percentile deviation mea-
surement techniques decreasingly robust, instead of increasingly
robust (see §3.2, Figure 17).

We then iteratively Chauvenet-reject the greatest out-
lier (§1), using either (1) the median or (2) the mode
instead of the mean, and the 68.3-percentile deviation
instead of the standard deviation.3 The effect of this on
the data presented in Figure 2 can be seen in Figure 3,
for each of our three, increasingly robust, 68.3-percentile
deviation measurement techniques.

2.3. Calibration

Before further using these two more-robust measures of
central tendency (§2.1) and three more-robust measures
of sample deviation (§2.2) to Chauvenet-reject outliers,
we calibrate these 2×3 = 6 more-robust techniques, using
uncontaminated data. We also calibrate two less-robust,
comparison techniques, using the mean and standard de-
viation (1) without and (2) with iterated Chauvenet re-
jection.

For each sample size 2 ≤ N ≤ 100, as well as for
N = 1000, we drew 100,000 samples from a Gaussian dis-
tribution of mean µ = 0 and standard deviation σ = 1,
and then recovered µ and σ using each technique. Av-
eraged over the 100,000 samples, the recovered value of
µ was always ≈0, and the recovered value of σ was ≈1
in the limit of large N . However, all of the techniques,
including the traditional, comparison techniques,4 un-
derestimated σ in the limit of small N (see Figure 4).

In Figure 4, we plot correction factors by which mea-
sured standard and 68.3-percentile deviations need to be
multiplied to yield the correct result, on average. We
make use of these correction factors throughout this pa-
per, to avoid overaggressive rejection (although this can
still happen in sufficiently small samples; see §3.3.1).

3. ROBUST TECHNIQUES APPLIED TO
CONTAMINATED DISTRIBUTIONS

We now evaluate the effectiveness (1) of the two tra-
ditional, less-robust techniques, and (2) of the 2× 3 = 6
more-robust techniques, that we introduced in §2 at
rejecting outliers from Gaussian (see §3.1 and §3.2) and
mildly non-Gaussian (see §3.3) distributions. In §3.1, we
consider the case of two-sided contaminants, meaning
that outliers are as likely to be high as they are to be
low. In §3.2, we consider the (more challenging) case of
one-sided contaminants, where all or almost all of the
outliers are high (or low); we also consider in-between
cases here.

3 With the following exception: We never reject down to a sam-
ple of identical measurements. In the standard case of produc-
ing a single measurement from multiple, we always leave at least
two distinct measurements. In the more general case of fitting a
multiple-parameter model to multiple measurements (see §8), we
always leave at least M + 1 distinct measurements, where M is the
number of model parameters.

4 It is well known that although the variance can be computed
without bias using Bessel’s correction, the standard deviation can-
not, and the correction depends on the shape of the distribution.
For a normal distribution, without rejection of outliers, the cor-

rection is given by
√
N−1

2

Γ
(
N−1

2

)
Γ(N2 )

, which matches what we de-

termined empirically, and plot in the upper-left panel of Figure 4
(solid black curve).
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Fig. 2.— Upper left: 100 sorted deviations from the median, with fraction f1 = 0.5 drawn from a Gaussian distribution of standard
deviation σ1 = 1, and fraction f2 = 0.5, representing contaminated measurments, drawn from a Gaussian distribution of standard deviation
σ2 = 10. Upper right: Zoom-in of the upper-left panel, with the 68.3-percentile deviation measured using technique 1, yielding a pre-
rejection value of σ1 = 4.07. Lower left: Zoom-in of the upper-left panel, with the 68.3-percentile deviation measured using technique 2,
yielding a pre-rejection value of σ1 = 2.53. Lower right: Zoom-in of the upper-left panel, with the 68.3-percentile deviation measured
using technique 3, yielding a pre-rejection value of σ1 = 2.01. See Figure 3 for post-rejection versions and measured values.

3.1. Normally Distributed Uncontaminated
Measurements with Two-Sided Contaminants

For sample sizes N = 1000, 100, and 10, we draw f1N
uncontaminated measurements from a Gaussian distri-
bution of mean µ1 = 0 and standard deviation σ1 = 1,
and f2N contaminated measurements, where f2 = 1−f1.
In this section, we model the contaminants as two-sided,
meaning that outliers are as likely to be high as they
are to be low. We draw contaminants from a Gaussian
distribution of mean µ2 = 0 and standard deviation σ2,
and add them to uncontaminated measurements, drawn
as above.5 In the case of two-sided contaminants, the

5 In this paper, we draw our contaminants from Gaussian dis-
tributions, which ensures that we include some of the worst-case
scenarios for rejecting outliers (from Gaussian uncontaminated-

mean, median, and mode are all three, on average, in-
sensitive to outliers, even in the limit of a large fraction
of the sample being contaminated (f2 → 1; see Figure 6).

measurement distributions) in our analyses. For example, with
two-sided contaminants, the contaminated measurements are then

also distributed as a Gaussian, of standard deviation
√
σ2

1 + σ2
2 ,

which becomes increasingly difficult to distinguish from the
uncontaminated-measurement distribution as σ2 → σ1 (and of
course as σ2 → 0). Furthermore, this contaminated-measurement
distribution becomes increasingly difficult to distinguish from any,
Gaussian uncontaminated-measurement distribution as f2 → 1.
We have also experimented with non-Gaussian contaminant dis-
tributions, but always to similar, or greater, effect: While these
outlier-rejection techniques do depend on the assumed shape of the
uncontaminated-measurement distribution, they do not depend on
the assumed shape of the contaminant distribution (other than
strongly contaminated measurements are of course easier to iden-
tify than weakly contaminated measurements).
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Fig. 3.— Figure 2, after iterated Chauvenet rejection. Upper left: Using the 68.3-percentile deviation from technique 1, yielding a
final measured value of σ1 = 1.22. Upper right: Zoom-in of the upper-left panel. Middle left: Using the 68.3-percentile deviation
from technique 2, yielding a final measured value of σ1 = 1.13. Middle right: Zoom-in of the middle-left panel. Lower left: Using the
68.3-percentile deviation from technique 3, yielding a final measured value of σ1 = 1.04. Lower right: Zoom-in of the lower-left panel.
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Fig. 4.— Correction factors by which standard and 68.3-percentile deviations, measured from uncontaminated data, need to be multiplied
to yield the correct result, on average, and to avoid overaggressive rejection (although this can still happen in sufficiently small samples;
see §3.3.1), (1) for the case of no rejection, using the mean and standard deviation (solid black curves; see Footnote 3); (2) for the case
of Chauvenet rejection, using the mean and standard deviation (dashed black curves); (3) for the case of Chauvenet rejection, using the
median and 68.3-percentile deviation as measured by technique 1 from §2.2 (solid red curves), as measured by technique 2 from §2.2 (solid
green curves), and as measured by technique 3 from §2.2 (solid blue curves); and (4) for the case of Chauvenet rejection, using the mode
and 68.3-percentile deviation as measured by technique 1 (dotted red curves), technique 2 (dotted green curves), and technique 3 (dotted
blue curves). Upper left: For the simplest case of computing a single σ (standard or 68.3-percentile deviation), using the deviations both
below and above µ (the mean, the median, or the mode; see §3.1). Lower left: For the case of computing separate σ below and above µ
(σ− and σ+, respectively) and using the smaller of the two when rejecting outliers (see §3.2). Lower right: For the same case, but using
σ− to reject outliers below µ and σ+ to reject outliers above µ (see §3.3.1). Note that technique 3 defaults to technique 2 when the two
are statistically equivalent (see Appendix A), or when fitting to fewer than three points (e.g., when N < 4 for the cases in the top row and
when N < 7 for the median cases in the bottom row). Similarly, technique 2 defaults to technique 1 when fitting to fewer than two points
(e.g., when N < 3 for the cases in the top row and when N < 5 for the median cases in the bottom row). Oscillations are not noise, but
odd-even effects (e.g., with equally weighted data, when N is odd, use of the median always results in at least one zero deviation, requiring
a larger correction factor). We use look-up tables for N ≤ 100 and power-law approximations for N > 100 (see Appendix B).
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Fig. 5.— Blank contaminant strength (σ2) vs. fraction of sample
(f2) figure. Each pixel corresponds to either a recovered quantity
(µ1 or σ1) or the uncertainty in a recovered quantity (∆µ1 or ∆σ1),
measured from 100 samples with contaminants modeled by f2 and
σ2. This figure is provided as reference, as axis information would
be too small to be easily readable in upcoming figures.

Consequently, this is a good case to evaluate the effec-
tiveness of our three, increasingly robust, 68.3-percentile
deviation techniques. (We explore the more challenging
case of one-sided contaminants in §3.2.)

For each technique and sample size, we draw 100 sam-
ples for each combination of f2 = 0, 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, 0.7, 0.8, 0.9, 1 and σ2 = 1, 1.6, 2.5, 4.0, 6.3, 10,
16, 25, 40, 63, 100 (see Figure 5), and plot the average
recovered µ1 in Figure 6, the uncertainty in the recovered
µ1 in Figure 7, the average recovered σ1 in Figure 8, and
the uncertainty in the recovered σ1 in Figure 9.

As expected with two-sided contaminants, the average
recovered µ1 is always ≈0. However, the uncertainty
in the recovered µ1, the average recovered σ1, and the
uncertainty in the recovered σ1 are all susceptible to
contamination, especially when f2 and σ2 are large.
However, our increasingly robust 68.3-percentile devia-
tion measurement techniques are increasingly effective
at rejecting outliers in large-f2 samples, allowing σ1 to
be measured significantly more accurately, and both
µ1 and σ1 to be measured significantly more precisely.
Note that this is at a marginal cost: When applied to
uncontaminated samples, our increasingly robust mea-
surement techniques recover µ1 and σ1 with degrading
precisions (Figures 7 and 9). This suggests that one
can reach a point of diminishing returns; however, this
is a drawback that we largely eliminate in §4. Given
this, when Chauvenet-rejecting two-sided contaminants,
we recommend using (1) the median (because it is just
as accurate as the mode (in this case), more precise,
and computationally faster) and (2) the 68.3-percentile
deviation as measured by technique 3 from §2.2 (the
broken-line fit). This technique is highlighted in Figures
6 – 9 with a bold outline.

3.2. Normally Distributed Uncontaminated
Measurements with One-Sided Contaminants

We now repeat the analysis of §3.1, but for the more
challenging case of one-sided contaminants, which we
model by drawing values from only the positive side of
a Gaussian distribution of mean µ2 = 0 and standard
deviation σ2. This case is more challenging because even
though the median is more robust than the mean, and the
mode is more robust than the median, even the mode will
be biased in the direction of the contaminants (see Fig-
ure 10), and increasingly so as the fraction of the sample
that is contaminated increases (see Figures 11 and 12).

Furthermore, as µ (equal to the mean, the median, or
the mode) becomes more biased in the direction of the
one-sided contaminants, σ (equal to the standard devia-
tion or the 68.3-percentile deviation, as measured by any
of the techniques presented in §2.2) becomes more biased
as well, (1) because of the contaminants, and (2) because
it is measured from µ. However, σ can be measured with
less bias, if measured using only the deviations from µ
that are in the opposite direction as the contaminants
(in this case, the deviations below µ; Figure 11). Since
the direction of the contaminants might not be known a
priori, or since the contaminants might not be fully one-
sided, instead being between the cases presented in §3.1
and §3.2, we measure σ both below and above µ,6 and
use the smaller of these two measurements when reject-
ing outliers (Figure 12). Note, using the smaller of these
two measurements should only be done if the uncontam-
inated measurements are symmetrically distributed (see
§3.3.1).

For the same techniques presented in §3.1, except now
computing σ both below and above µ and adopting the
smaller of the two, and for the same sample sizes pre-
sented in §3.1, we plot the average recovered µ1 in Fig-
ure 13, the uncertainty in the recovered µ1 in Figure 14,
the average recovered σ1 in Figure 15, and the uncer-
tainty in the recovered σ1 in Figure 16.

With one-sided contaminants, all four of these are sus-
ceptible to contamination, especially when f2 and σ2 are
large. However, for a fixed σ-measurement technique,
our increasingly robust µ-measurement techniques are in-
creasingly effective at rejecting outliers in large-f2 sam-
ples, allowing µ1 and σ1 to be measured both signifi-
cantly more accurately and significantly more precisely.
However, when µ1 cannot be measured accurately, as is
the case with the mean and the median when f2 is large
(Figures 10, 11, and 12), our (otherwise) increasingly
robust σ-measurement techniques are decreasingly effec-
tive at rejecting outliers (see Figure 17). However, the
mode can measure µ1 significantly more accurately (Fig-
ures 10, 11, and 12), even when f2 is large, though with
decreasing effectiveness in the low-N limit. In any case,
when µ1 is measured accurately, all of these techniques
are nearly equally effective, because σ1 is measured on
the nearly uncontaminated side of each sample’s distri-
bution. Given this, when Chauvenet-rejecting one-sided
contaminants, we recommend using (1) the mode, and
(2) the 68.3-percentile deviation as measured by tech-
nique 1 from §2.2 (the 68.3% value, because it is essen-

6 When computing σ below or above µ, if a measurement equals
µ, we include it in both the below and above calculations, but with
50% weight for each (see §6).
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Fig. 10.— Left: 1000 measurements, with fraction f1 = 0.15 drawn from a Gaussian distribution of mean µ1 = 0 and standard deviation
σ1 = 1, and fraction f2 = 0.85, representing contaminated measurements, drawn from the positive side of a Gaussian distribution of mean
µ2 = 0 and standard deviation σ2 = 10, and added to uncontaminated measurements, drawn as above. The measurements have been
binned, and the mean (solid red line), median (solid green line), and mode (solid blue line) have been marked. The dashed black curve
marks the theoretical, or large-N, distribution, and for this the mean, median, and mode have also been marked, with dashed lines. Right:
Zoom-in of the left panel, with smaller bins. A large f2 was chosen to more clearly demonstrate that the mode is biased in the direction
of the contaminants, albeit only marginally. Also, the sample mode differs from the theoretical mode more than the sample median and
mean differ from the theoretical median and mean, due to “noise” peaks, caused by random sampling. This is typical, and why the mode,
although significantly more accurate, is less precise.

tially as accurate as the other techniques (in this case),
more precise,7 and computationally faster). This tech-
nique is highlighted in Figures 13 – 16 with a bold out-
line.

When Chauvenet-rejecting contaminants that are
neither one-sided nor two-sided, but that are in-between
these cases, with values that are both positive and
negative, but not in equal proportion or strength, we
recommend using the smaller of the below- and above-
measured 68.3-percentile deviations, as in the one-sided
case, but recommend using (1) the mode (which is
just as effective as the median at eliminating two-sided
contaminants (§3.1), but more effective at eliminating
one-sided contaminants), and (2) the 68.3-percentile
deviation as measured by technique 3 from §2.2 (the
broken line fit, which is more effective than the other
techniques at eliminating two-sided contaminants (§3.1)
and essentially as effective at eliminating one-sided
contaminants). This technique is highlighted in Figures
13 – 16 with a double outline.

3.3. Non-Normally Distributed Uncontaminated
Measurements with Contaminants

In §3.1 and §3.2, we assumed that the uncontaminated
measurements were drawn from a Gaussian distribution.
Although this is often a reasonable assumption, some-
times one might need to admit the possibility of an asym-
metric (see §3.3.1) or a peaked or flat-topped (see §3.3.2)
distribution for the uncontaminated measurements.

7 As in the case of two-sided contaminants, when applied to un-
contaminated samples, our increasingly robust measurement tech-
niques recover µ1 and σ1 with degrading precisions (Figures 14 and
16), but again, this is a drawback that we largely eliminate in §4.

3.3.1. Asymmetric Uncontaminated Distributions

In this case, it is better to use the σ (equal to the stan-
dard deviation or the 68.3-percentile deviation, as mea-
sured by any of the techniques presented in §2.2) mea-
sured from the deviations below µ (equal to the mean,
the median, or the mode) to reject outliers below µ, and
the σ measured from the deviations above µ to reject
outliers above µ, assuming that the distribution is only
mildly non-normal, even if this means not always using
the smaller of the two σ values, as can be done with nor-
mally distributed uncontaminated measurements (§3.2).

However, this weakens one’s ability to reject outliers,
particularly when one-sided contaminants dominate the
sample. Even if the uncontaminated measurements are
not asymmetrically distributed, simply admitting the
possibility can reduce one’s ability to remove contami-
nants, so this is a decision that should be made with
care.

To demonstrate this, we repeated the analysis of §3.2,
not changing the uncontaminated measurements, but
changing the assumption that we made about their distri-
bution, instead admitting the possibility of asymmetry.
We then plotted the average recovered µ1, the uncer-
tainty in the recovered µ1, the average recovered below-
measured σ1−, the uncertainty in the recovered σ1−, the
average recovered above-measured σ1+, and the uncer-
tainty in the recovered σ1+, and compared these to those
from §3.1 and §3.2.

As one might expect, (1) the plots for µ1, ∆µ1, σ1−,
and ∆σ1− resembled the one-sided contaminant results
(Figures 13 – 16, respectively), and (2) the plots for σ1+
and ∆σ1+ resembled the two-sided contaminant results
(Figures 15 and 16, respectively, but for about half as
many measurements), where the latter can be less ef-
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Fig. 11.— 1000 measurements, with fraction f1 = 1 − f2 drawn from a Gaussian distribution of mean µ1 = 0 and standard deviation
σ1 = 1, and fraction f2 = 0.15 (top row), 0.5 (middle row), and 0.85 (bottom row), representing contaminated measurements, drawn from
the positive side of a Gaussian distribution of mean µ2 = 0 and standard deviation σ2 = 10, and added to uncontaminated measurements,
drawn as above. Left column: Median (black line) and 68.3-percentile deviations, measured both below and above the median, using
technique 1 from §2.2 (red lines), using technique 2 from §2.2 (green lines), and using technique 3 from §2.2 (blue lines). Right column:
Same as the left column, except using the mode instead of the median. The mode performs better, especially in the limit of large f2. The
68.3-percentile deviation performs better when paired with the mode, and when measured in the opposite direction as the contaminants.
See Figure 12 for post-rejection versions.
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Fig. 12.— Figure 11, after iterated Chauvenet rejection, using the smaller of the below- and above-measured 68.3-percentile deviations, in
this case as measured by technique 1 from §2.2. Techniques 2 and 3 from §2.2 yield similar post-rejection samples and µ and σ measurements.
The mode continues to perform better in the limit of large f2.
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Fig. 17.— Left: Sorted deviations from below the median of 100 measurements. A fraction f1 = 0.15 of these measurements are
drawn from a Gaussian distribution of mean µ1 = 0 and standard deviation σ1 = 1, and a fraction f2 = 0.85, representing contaminated
measurements, are drawn from the positive side of a Gaussian distribution of mean µ2 = 0 and standard deviation σ2 = 10, and added to
uncontaminated measurements, drawn as above. The standard deviation, measured below the median, is marked (black arrow). Right:
Zoom-in of the left panel, but with the 68.3-percentile deviation, also measured below the median, using technique 1 from §2.2 (68.3%
value, red), using technique 2 from §2.2 (linear fit, green), and using technique 3 from §2.2 (broken-line fit, blue), instead marked. In
this case, the median significantly overestimates µ1, measuring 5.81 instead of 0, and consequently the curve breaks downward instead of
upward. When this happens, our normally increasingly robust σ-measurement techniques are decreasingly accurate, measuring σ1 = 4.58,
5.11, 5.78, and 6.32, respectively, instead of 1. In other words, these techniques are only increasingly robust if µ1 is measured sufficiently
accurately. This is the case with the mode, even when f2 is large, but is not the case with the mean and the median when f2 is large
(Figures 10 and 11), even post-rejection (Figure 12).

fective in the limit of large f2 and σ2 (but still sig-
nificantly more effective than traditional Chauvenet re-
jection). Since this case approximates both one-sided
and two-sided results, when Chauvenet-rejecting con-
taminants, we recommend using (1) the mode and (2) the
68.3-percentile deviation as measured by technique 3
from §2.2 (the broken-line fit) for the same reasons that
we recommend using this combination when rejecting in-
between contaminants from normally distributed uncon-
taminated measurements (§3.2).

It should be noted that if we also change the uncontam-
inated measurements to be asymmetrically distributed,
instead of merely admitting the possibility that they are
asymmetrically distributed, the mean, median, and mode
then mean different things, in the sense that they mark
different parts of the distribution, even in the limit of
large N and no contaminants. Furthermore, deviations,
however measured, from each of these µ measurements
likewise then mean different things. A deeper exploration
of these differences, and of their effects on contaminant
removal, is beyond the scope of this paper. However, as
long as the asymmetry is mild, the effectiveness of this
technique should not differ greatly from what has been
presented here.8

It should also be noted that in the simpler case of two-
sided contaminants, this technique differs very little from
what has been presented in §3.1, except that σ1−, ∆σ1−,
σ1+, and ∆σ1+ are each determined with about half as
many measurements (the measurements on each quan-

8 And what has been presented here is treating each side of the
distribution as a pure Gaussian, but of different σ (which, techni-
cally, is a discontinuous approximation of the true distribution.)

tity’s side of µ1).
Finally, it should be noted that this technique is less

prone to runaway over-rejection than the techniques pre-
sented in §3.1 and §3.2. The calibration of these tech-
niques that we introduced in §2.3 is intended to, and
largely does, prevent this from happening, but it can still
happen in the limit of very-low N , if two measurements
happen to be unusually close together (in which case all
other measurements are rejected). For uncontaminated,
Gaussian-random data, and the techniques presented in
§3.1 and §3.2, this happens ≈25% – 33%, ≈3.6% – 9.4%,
and ≈0.30% – 2.3% of the time when N = 5, 10, and 20,
respectively. This is not surprising, given that very-low
N distributions can be very non-Gaussian in appearance,
in which case this, asymmetric technique may be more
appropriate. In this case, again applied to uncontam-
inated, Gaussian-random data, runaway over-rejection
happens only ≈0.014% of the time when N = 5, and
never when N ≥ 10.

3.3.2. Peaked or Flat-Topped Uncontaminated
Distributions

Consider the following generalization of the Gaussian
(technically called an exponential power distribution):

p(δ) =

√
κ√

2πσ
e−

1
2 | δσ |2κ , (5)

which reduces to a Gaussian when κ = 1, but results in
peaked (positive-kurtosis) distributions when κ < 1 and
flat-topped (negative-kurtosis) distributions when κ > 1
(see Figure 18). The standard deviation of this distribu-
tion is σ/

√
κ.
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Fig. 18.— Exponential power distribution (Equation 5), for κ =
0.5 (peaked), 0.7, 1 (Gaussian), 1.4, and 2 (flat-topped).

For this distribution, Chauvenet’s criterion (Equation
1) implies that measurements are rejected if their devia-
tions are greater than a certain number of σ/

√
κ (stan-

dard deviations), instead of σ, as in the pure Gaussian
case.

Furthermore, Equation 4 becomes:

δi =
σ√
κ

[√
2erf−1

(
i− 0.317

N

)]
, (6)

which is proportional to σ/
√
κ, instead of σ. Conse-

quently, the techniques presented in this paper work
identically if the uncontaminated measurements are dis-
tributed not normally but peaked or flat-topped – in this
specific way.

Of course, not all peaked and flat-topped distributions
are of this specific form. However, if only mildly peaked
or flat-topped, this form is a good, first-order approxima-
tion, and consequently we conclude that the techniques
presented in this paper are not overly sensitive to our
assumption of Gaussianity, for the uncontaminated mea-
surements.

We summarize all of the recommended, or best-option,
robust techniques of §3 in Figure 19.

4. ROBUST CHAUVENET REJECTION:
ACCURACY AND PRECISION

In general, we have found that the mode is just as ac-
curate (in the case of two-sided contaminants) or more
accurate (in the case of one-sided contaminants) than
the median, yet the mode is up to ≈5.8 times less precise
than the median, and up to ≈7.7 times less precise than
the mean. We have also found that when µ (equal to
the median or the mode) is measured accurately, our in-
creasingly robust 68.3-percentile deviation measurement
techniques are either equally accurate (in the case of one-
sided contaminants) or increasingly accurate (in the case
of two-sided contaminants), yet technique 3 (the broken-
line fit) is up to ≈2.2 times less precise than technique 2
(the linear fit), up to ≈2.4 times less precise than tech-
nique 1 (the 68.3% value), and up to ≈3.6 times less

precise than the standard deviation.
Consequently, there appears to be a tradeoff between

accuracy and precision. But can we have both? In this
section, we demonstrate that we can, by applying (1) our
robust improvements to traditional Chauvenet rejection
(§3), and (2) traditional Chauvenet rejection (§1) in se-
quence. Traditional Chauvenet rejection uses the mean
and the standard deviation, and is consequently the least
robust of these techniques, but it is also the most precise,
at least when not significantly contaminated by outliers.
By applying our robust techniques first, we eliminate the
outliers that most significantly affect traditional Chau-
venet rejection, allowing us to then capitalize on its pre-
cision without its inaccuracy.

We demonstrate the success of this approach first
using only our best-option robust techniques, for each of
the following contaminant types:

• The median + technique 3 (the broken-line fit) is
our best option for two-sided contaminants, which
are contaminants that are both positive and nega-
tive, in equal proportion and strength (§3.1). We
plot the average recovered µ1, the uncertainty in
the recovered µ1, the average recovered σ1, and the
uncertainty in the recovered σ1 for this technique
followed by traditional Chauvenet rejection in the
third column of Figures 20 – 23, respectively.

• The mode + technique 1 (the 68.3% value) is our
best option for one-sided contaminants, which are
contaminants that are all positive (the case pre-
sented here) or all negative (§3.2). We plot the av-
erage recovered µ1, the uncertainty in the recovered
µ1, the average recovered σ1, and the uncertainty
in the recovered σ1 for this technique followed by
traditional Chauvenet rejection in the third column
of Figures 24 – 27, respectively.

• The mode + technique 3 (the broken-line fit) is
our best option (1) for in-between cases, in which
contaminants are both positive and negative, but
not in equal proportion or strength (§3.2), and/or
(2) if the uncontaminated distribution is taken to
be asymmetric (§3.3.1). The former case behaves
very similarly to Figures 20 – 23 in the limit of two-
sided contaminants, and very similarly to Figures
24 – 27 in the limit of (positive) one-sided contam-
inants. The latter case behaves very similarly to
Figure 20 (µ1), Figure 21 (∆µ1), Figure 22 (σ1−
and σ1+), and Figure 23 (∆σ1− and ∆σ1+) in the
limit of two-sided contaminants, and similarly to
Figure 24 (µ1), Figure 25 (∆µ1), Figure 26 (σ1−),
Figure 27 (∆σ1−), Figure 22 (σ1+), and Figure 23
(∆σ1+), in the limit of (positive) one-sided contam-
inants. (Consequently, we will not plot these cases
separately.)

In all cases, our best-option robust techniques followed
by traditional Chauvenet rejection results in vastly im-
proved precisions – comparable to those of traditional
Chauvenet rejection when not significantly contaminated
by outliers – with only small compromises in accuracy.
The small compromises in accuracy, when they occur, are
due to our best-option robust techniques not eliminating
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Fig. 28.— Flowchart of our algorithm, without bulk pre-rejection
(see Figure 30). The most discrepant outlier is rejected each iter-
ation, and one iterates until no outliers remain before moving on
to the next step. µ and σ (or σ− and σ+, depending on whether
the uncontaminated distribution is symmetric or asymmetric, and
on the contaminant type; Figure 19) are recalculated after each
iteration, and the latter is multiplied by the appropriate correction
factor (see Figure 29) before being used to reject the next outlier.
µ and σ (or σ− and σ+) may be calculated in different ways in
different steps, but how they are used to reject outliers depends on
whether the uncontaminated distribution is symmetric or asym-
metric, and on the contaminant type, and consequently does not
change from step to step (Figure 19).

enough outliers before traditional Chauvenet rejection is
applied.

We further improve this approach by sequencing
(1) our best-option robust technique from above, (2) our
most-precise robust technique – the median + tech-
nique 1 (the 68.3% value) – to eliminate more outliers
before applying (3) traditional Chauvenet rejection (see
Figure 28 for a flowchart). In nearly all cases, this either
leaves the accuracies and the precisions the same, or im-
proves them, by as much as ≈30%. These are worthwhile
gains, particularly given the computational efficiency of
the additional step, but they are also difficult to see given
the logarithmic scaling that we use in Figures 20 – 27.

Consequently, we instead plot the improvement over col-
umn 3, multiplied by 100, in column 4.

Both of these sequencing techniques, as well as a bulk-
rejection variant of the latter technique that we present
in §5, require the calculation of new correction factors,
which we do as in §2.3 and plot in Figure 29.

5. BULK REJECTION

So far, we have rejected only one outlier – the most
discrepant outlier – at a time, recomputing µ and σ (or
σ− and σ+, depending on whether the uncontaminated
distribution is symmetric or asymmetric, and on the con-
taminant type; Figure 19) after each rejection. This can
be time-consuming, computationally, particularly with
large samples, so now we evaluate the effectiveness of
bulk rejection. In this case, we reject all measurements
that meet Chauvenet’s criterion each iteration (however,
see Footnote 3), recomputing µ and σ once per iteration
instead of once per rejection.

However, bulk rejection works only if σ1 is never sig-
nificantly underestimated. If this happens, even if only
for a single iteration, significant over-rejection can oc-
cur. Furthermore, each of the techniques that we have
presented can fail in this way, under the right (or wrong)
conditions:

• With one-sided contaminants, when µ1 cannot be
measured accurately (Figure 13), the standard de-
viation underestimates the 68.3-percentile devia-
tion as measured by technique 1 (the 68.3% value),
which underestimates the 68.3-percentile devia-
tion as measured by technique 2 (the linear fit),
which underestimates the 68.3-percentile deviation
as measured by technique 3 (the broken-line fit;
Figure 17). In this case, the latter technique over-
estimates σ1. However, the former three tech-
niques can either overestimate σ1 or underestimate
it, sometimes significantly.

• With one-sided or two-sided contaminants, when
µ1 can be measured accurately, technique 3 (the
broken-line fit) is as accurate (§3.2) or more accu-
rate (§3.1) than the other techniques, but it is also
the least precise (§4), meaning that it is as likely
to underestimate σ1 as overestimate it, and, again,
sometimes significantly.

Note also that one can transition between these two
cases: µ1 often begins inaccurately measured but ends
accurately measured, after iterations of rejections (Fig-
ures 11 and 12).

A solution that works in all cases is to measure σ1 using
both techniques 2 (the linear fit) and 3 (the broken-line
fit), and adopt the larger of the two for bulk rejection.
When µ1 cannot be measured accurately, the deviation
curve breaks downward, and the broken-line fit is the
most conservative option (Figure 17). When µ1 can be
measured accurately, the deviation curve breaks upward,
and the linear fit is a sufficiently conservative option (Fig-
ures 2 and 3). (Technique 1, the 68.3% value, is in this
case a more conservative option, but can be overly con-
servative, bulk-rejecting too few points per iteration.)

We use the same µ-measurement technique as we use
for individual rejection. Finally, once bulk rejection
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Fig. 29.— Correction factors by which standard and 68.3-percentile deviations, measured from uncontaminated data, need to be multiplied
to yield the correct result, on average, and to avoid overaggressive rejection (although this can still happen in sufficiently small samples;
see 3.3.1), (1) for the case of our best-option robust techniques (see below; black curves, from Figure 4); (2) for the case of (1) followed
by traditional Chauvenet rejection (red curves); (3) for the case of (1) followed by our most-precise robust technique – the median +
technique 1 (the 68.3% value) – followed by traditional Chauvenet rejection (green curves); and (4) for the case of bulk rejection (see §5)
followed by (3) (blue curves). Upper left: For our best-option robust technique for two-sided contaminants – the median + technique 3
(the broken-line fit) – in which we compute a single σ using the deviations both below and above µ (§3.1). Upper right: For our best-
option robust technique for one-sided contaminants – the mode + technique 1 (the 68.3% value) – in which we compute separate σ below
and above µ (σ− and σ+, respectively) and use the smaller of the two when rejecting outliers (§3.2). Lower left: For our best-option
robust technique for in-between cases – the mode + technique 3 (the broken-line fit) – in which we also use the smaller of σ− and σ+ when
rejecting outliers (§3.2). Lower right: For our best-option robust technique if the uncontaminated distribution is taken to be asymmetric
– the mode + technique 3 (the broken-line fit) – in which we use σ− to reject outliers below µ and σ+ to reject outliers above µ (§3.3.1).
We use look-up tables for N ≤ 100 and power-law approximations for N > 100 (see Appendix B).

is done, we follow up with individual rejection, as
described in the second to last paragraph of §4 (see
Figure 30 for a flowchart). Individual rejection (1) is
significantly faster now that most of the outliers have
already been bulk pre-rejected, and (2) ensures accuracy
with precision (§4). We plot the results in column 5
of Figures 20 – 27, and, desirably, they do not differ
significantly from those of column 4. Speed-up times are
presented in Table 1.

6. WEIGHTED DATA

We now consider the case of weighted data. In this
case, the mean is given by:

µ =

N∑
i=1

wixi

N∑
i=1

wi

, (7)

where xi are the data and wi are the weights. When the
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Fig. 30.— Flowchart of our algorithm, with bulk pre-rejection.
The first step is bulk rejection, in which all outliers are rejected
each iteration, and one iterates until no more outliers are identified.
µ and σ (or σ− and σ+, depending on whether the uncontaminated
distribution is symmetric or asymmetric, and on the contaminant
type; Figure 19) are recalculated after each iteration, and the lat-
ter is multiplied by the appropriate correction factor (Figure 29)
before being used to reject more outliers. The second step is our
individual-rejection algorithm (Figure 28), which ensures accuracy
with precision (§4)

mean is measured from the sample, the standard devia-
tion is given by:

σ =

√√√√√√√√√√
N∑
i=1

wi(xi − µ)2

N∑
i=1

wi −∆

N∑
i=1

w2
i

N∑
i=1

wi

, (8)

where ∆ = 1 when summing over data both below and
above the mean, and we take ∆ = 0.5 when summing
over data either only below or only above the mean.

To determine the weighted median, sort the data and
the weights by xi. First, consider the following, crude
definition: Let j be the smallest integer such that:

j∑
i=1

wi ≥ 0.5

N∑
i=1

wi. (9)

The weighted median could then be given by µ = xj ,
but this definition would be very sensitive to edge effects.
Instead, we define the weighted median as follows. Let:

sj =

j∑
i=1

(0.5wi−1 + 0.5wi), (10)

where w0 = 0, and let j be the smallest integer such that:

sj ≥ 0.5

N∑
i=1

wi. (11)

The weighted median is then given by interpolation:

µ = xj−1 + (xj − xj−1)

0.5
N∑
i=1

wi − sj−1

sj − sj−1
, (12)

where s0 = 0.
To determine the weighted mode, we again follow an

iterative half-sample approach (§2.1). For every j such
that:

sj ≤ 0.5

N∑
i=1

wi, (13)

let k be the largest integer such that:

sk ≤ sj + 0.5

N∑
i=1

wi, (14)

and for every k such that:

sk ≥ 0.5

N∑
i=1

wi, (15)

let j be the smallest integer such that:

sj ≥ sk − 0.5

N∑
i=1

wi. (16)

Of these (j,k) combinations, select the one for which
|xk − xj | is smallest. If multiple combinations meet this
criterion, let j be the smallest of their j values and k
be the largest of their k values. Restricting oneself to
only the k− j + 1 values between and including j and k,
repeat this procedure, iterating to completion. Take the
weighted median of the final k − j + 1 values.

To determine the weighted 68.3-percentile deviation,
measured either from the weighted median or the
weighted mode, sort the deviations δi = |xi − µ| and
the weights by δi. Analogously to the weighted median
above, first consider the following, crude definition: Let
j be the smallest integer such that:

j∑
i=1

wi ≥ 0.683

N∑
i=1

wi. (17)

The weighted 68.3-percentile deviation could then be
given by σ = δj , but, again, this definition would be
very sensitive to edge effects. Instead, we define the
weighted 68.3-percentile deviation, for technique 1 (the
68.3% value), as follows. Let:9

sj =

j∑
i=1

(0.317wi−1 + 0.683wi), (18)

where w0 = 0, and let j be the smallest integer such that:

9 We center these not halfway through each bin, as we do for
the weighted median and weighted mode, but 68.3% of the way
through each bin. The need for this can be seen in the case of
µ being known a priori, in the limit of one measurement having
significantly more weight than the rest, or in the limit of N → 1.
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TABLE 1
Time in Milliseconds to Measure µ1 and σ1

a

Contaminant Type: 2-Sided 1-Sided In-Between
(2-Sided Limit) (1-Sided Limit)

Post-Bulk Rejection Technique:b RCR (Median-T3) RCR (Mode-T1) RCR (Mode-T3)

Corresponding Figures: 19 – 22 23 – 26 — —

Bulk Pre-Rejection: No Yes No Yes No Yes No Yes

Corresponding Column: 4 5 4 5 — — — —

N = 1000 73 29 160 5.6 160 59 190 8.7

N = 100 0.86 0.50 1.6 0.40 1.9 0.98 2.0 2.2

N = 10 0.027 0.030 0.042 0.037 0.047 0.042 0.048 0.078

a Averaged over the 11× 11× 100 = 121, 000 samples in each σ2 vs. f2 figure in columns 4 vs. 5 of Figures 20 –
23 (2-sided case), Figures 24 – 27 (1-sided case), and in corresponding (but similar looking, and hence unplotted;
§4) figures for the in-between case, in both the 2-sided and 1-sided limits, using a single, AMD Opteron 6168
processor. Measuring the mode is ≈1.6N0.05 times slower than measuring the median, and technique 3 (the
broken-line fit) is ≈1.2 times slower than technique 1 (the 68.3% value), but bulk pre-rejection is ≈(N/7.8)0.21

(2-sided) to ≈(N/12)0.73 (1-sided) times faster than no bulk pre-rejection, where N is the sample size. Time to
completion is proportional to Nα, where α ≈ 2 (no bulk pre-rejection) or 1 < α < 2 (bulk pre-rejection), plus an
overhead constant, which dominates when N . 5− 500. In the case of weighted data (see §6), completion times
are roughly 1 + 0.7N−0.4 times longer.
b + RCR (Median-T1) + CR (§5)

sj ≥ 0.683

N∑
i=1

wi. (19)

The weighted 68.3-percentile deviation, for technique 1,
is then given by interpolation:

σ = δj−1 + (δj − δj−1)

0.683
N∑
i=1

wi − sj−1

sj − sj−1
, (20)

where s0 = 0. For techniques 2 (the linear fit) and 3 (the
broken-line fit), the 68.3-percentile deviation is given by

plotting δi vs.
√

2erf−1(si/
∑N
i=1 wi) and fitting as before

(§2.2), except to weighted data (e.g., Appendix A).
Note that as defined here, all of these measurement

techniques reduce to their unweighted counterparts (§2.1
and §2.2) when all of the weights, wi, are equal.

Note also that the correction factors (§2.3) that one
uses depend on the weights of the data. To this end,
for each of the four scenarios that we consider in §4,
corresponding to the four panels of Figure 29, we have
computed correction factors for the case of bulk rejec-
tion (§5) followed by individual rejection as described in
the second to last paragraph of §4, for five representative
weight distributions: (1) all weights equal (see Figure 31,
solid black curves – same as Figure 29, blue curves);
(2) weights distributed normally with standard devia-
tion as a fraction of the mean σw/µw = 0.1 (Figure 31,
solid red curves); (3) weights distributed normally with
σw/µw = 0.3 (Figure 31, solid green curves); (4) weights
distributed uniformly from zero (i.e., low-weight points
as common as high-weight points; Figure 31, solid blue
curves), corresponding to σw/µw ≈ 0.58; and (5) weights
distributed inversely over one dex (i.e., low-weight points
more common than high-weight points, with the sum of
the weights of the low-weight points as impactful as the
sum of the weights of the high-weight points; Figure 31,

solid purple curves), corresponding to σw/µw ≈ 0.73.
The differences between these are small, but monoton-

ically increasing with σw/µw, at each N . Furthermore,
we have tried other-shaped weight distributions, but with
similar σw/µw, to similar results: The small differences
that we do see appear to be more about the effective
width of these distributions – which can be easily mea-
sured from any sample of weighted measurements – than
about the specific shape of these distributions.

Consequently, using these five representative weight
distributions, we have produced empirical approxima-
tions, as functions of (1) N and (2) σw/µw of the

xi =
√

2erf−1(si/
∑N
i=1 wi) < 1 points, which can be

used with any sample of similarly distributed weights
(Figure 31, dashed curves; see Appendix B). We demon-
strate these for the latter three weight distributions listed
above in columns 6, 7, and 8, respectively, of Figures 20
– 27, and, desirably, they do not differ significantly from
those of column 5, in which σw/µw = 0, although there is
some decrease in effectiveness in the low-N , high-σw/µw
limit.

It is this combination of (1) sequencing robust improve-
ments to traditional Chauvenet rejection with traditional
Chauvenet rejection, to achieve both accuracy and preci-
sion (§4), (2) bulk pre-rejection, to significantly decrease
computing times in large samples (§5), and (3) the abil-
ity to handle weighted data (§6) that we typically refer
to as robust Chauvenet rejection (RCR).

7. EXAMPLE: APERTURE PHOTOMETRY

The Skynet Robotic Telescope Network is a global net-
work of fully automated, or robotic, volunteer telescopes,
scheduled through a common web interface.10 Currently,
our optical telescopes range in size from 14 to 40 inches,
and span four continents. Recently, we added Skynet’s
first radio telescope, Green Bank Observatory’s 20-meter
diameter dish, in West Virginia (Martin et al. 2018).

10 https://skynet.unc.edu



34 Maples et al.

Fig. 31.— Same as the blue curves from Figure 29, but for five representative weight distributions: (1) all weights equal (solid black curves
– same as the blue curves from Figure 29); (2) weights distributed normally with standard deviation as a fraction of the mean σw/µw = 0.1
(solid red curves); (3) weights distributed normally with σw/µw = 0.3 (solid green curves); (4) weights distributed uniformly from zero
(i.e., low-weight points as common as high-weight points; solid blue curves), corresponding to σw/µw ≈ 0.58; and (5) weights distributed
inversely over one dex (i.e., low-weight points more common than high-weight points, with the sum of the weights of the low-weight points
as impactful as the sum of the weights of the high-weight points; solid purple curves), corresponding to σw/µw ≈ 0.73. From these, we

have produced empirical approximations, as functions of (1) N and (2) σw/µw of the xi =
√

2erf−1(si/
∑N
i=1 wi) < 1 points, which can

be used with any sample of similarly distributed weights (dashed curves; see Appendix B).

We have been incorporating RCR into Skynet’s image-
processing library, beginning with our single-dish map-
ping algorithm (Martin et al. 2018). Here, we use RCR
extensively: (1) to eliminate contaminants during gain
calibration; (2) to measure the noise level of the data
along each scan, and as a function of time, to aid in back-
ground subtraction along the scans; (3) to combine lo-
cally fitted, background-level models into global models,
for background subtraction along each scan; (4) to elimi-
nate contaminants if signal and telescope-position clocks
must be synchronized post facto from the background-
subtracted data; (5) to measure the noise level of the
background-subtracted data across each scan, and as
a function of time, to aid in radio-frequency interfer-

ence (RFI) cleaning; and (6) to combine locally fitted
models of the background-subtracted, RFI-cleaned sig-
nal into a global model, describing the entire observa-
tion. After this, we locally model and fit a “surface” to
the background-subtracted, time-delay corrected, RFI-
cleaned data, filling in the gaps between the signal mea-
surements to produce the final image (e.g., see Fig-
ure 32). Furthermore, each pixel in the final image is
weighted, equal to the proximity-weighted number of
data points that contributed to its determination (e.g.,
Figure 32, lower right).

Here, we demonstrate another application of RCR:
aperture photometry, in this case of the primary source,
Cas A, in the lower-left panel of Figure 32. We have cen-
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Fig. 32.— Upper left: Signal-measurement positions from an on-the-fly raster mapping of Cas A, made with Green Bank Observatory’s
20-meter diameter telescope, in L band (gaps at the top and bottom are due to the telescope jumping ahead to get back on schedule, after
losing time reversing direction at the ends of scans). Upper right: Raw image, which has been surface modeled (to fill in the gaps between
the signal measurements, without additionally blurring the image), but has not been background subtracted, time-delay corrected, or RFI
cleaned. Lower left: Final image, which has been background subtracted, time-delay corrected, RFI cleaned, and then surface modeled.
Lower right: Proximity-weighted number of data points that contributed to the surface model at each pixel. Weights are lower in the
vicinity of signal, due to the RFI-cleaning algorithm (Martin et al. 2018). In the latter three panels, square-root scaling is used to enhance
the visibility of fainter structures.

tered the aperture on the source, and have selected its
radius to match that of the minimum between the source
and its first Airy ring (see Figure 33). We sum all of the
values in the aperture, but from each we must also sub-
tract off the average background-level value, which we
measure from the surrounding annulus.

The annulus we have selected to extend from the radius
of the aperture to 10 beamwidths (Figure 33). However,

it is heavily contaminated, by the source’s Airy rings
and diffraction spikes, and by other sources. This is a
good case to demonstrate RCR, because (1) a large frac-
tion, f2, of the pixels in the annulus are contaminated,
and (2) they are strongly contaminated, σ2, compared
to the background-noise level, σ1. It is also a good case
to demonstrate bulk pre-rejection (§5), because there is
a large number of pixels in the annulus, and to demon-
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Fig. 33.— Same as the lower-left panel of Figure 32, except that contaminated pixels (contaminated by other sources, Airy rings, diffraction
spikes, etc.) have been robust-Chauvenet rejected within an annulus in which we are measuring the background level, (1) assuming that
the contaminants are one sided (left), and (2) assuming that the contaminants are an in-between case, with some negative contaminants
as well (right).

strate RCR’s ability to handle weighted data (§6, Fig-
ure 32, lower right).

These are one-sided contaminants, so we follow bulk
pre-rejection with “RCR (Mode – Technique 1) + RCR
(Median – Technique 1) + CR” (§4, Figures 24 – 27).
The rejected pixels have been excised from the left panel
of Figure 33.

If one suspected an in-between case, with some nega-
tive contaminants as well, we would instead follow bulk
pre-rejection with “RCR (Mode – Technique 3) + RCR
(Median – Technique 1) + CR” (§4). The rejected pixels
for this case have been excised from the right panel of
Figure 33.

For these two cases, the post-rejection background level
is measured to be −0.00002 ± 0.00047 and −0.00003 ±
0.00045, respectively, which is a significant improve-
ment over the pre-rejection value, 0.023 ± 0.040 (gain-
calibration units).

It is also a significant improvement over what tradi-
tional Chauvenet rejection yields: 0.022 ± 0.036, which
is nearly identical to the pre-rejection value. I.e., tradi-
tional Chauvenet rejection fails to eliminate most of the
outliers, resulting in biased, and additionally uncertain,
photometry. In this case, traditional Chauvenet rejec-
tion is equivalent to sigma clipping with a 4.35σ thresh-
old, given the number of pixels in the annulus (Equation
1). This demonstrates that something as fundamental
to astronomy as aperture photometry can be improved
upon, in the limit of contaminated, or crowded, fields.

Lastly, we point out that RCR has already been suc-
cessfully employed by Trotter et al. (2017), who made
many measurements of Cas A, and other bright radio
sources, with Skynet’s 20-meter telescope, and calibrated
these with measurements of Cyg A, observed as closely
in time as possible, but not always on the same day.

RCR was used to reject measurements that were outly-
ing, because of variations in the receiver’s gain between
the primary and calibration observations. In some cases,
in particular when the timescale between these obser-
vations was longer, up to 35% of these samples were
contaminated, necessitating the use of RCR instead of
traditional Chauvenet rejection/sigma clipping. (Trot-
ter et al. additionally used RCR to eliminate occasional
pointing errors when modeling systematic focus differ-
ences between these sources, from drift-scan data taken
with a different, transit radio telescope.)

8. MODEL FITTING

So far, we have only considered cases where uncon-
taminated measurements are distributed, either normally
(§3.1, §3.2) or non-normally (§3.3), about a single, pa-
rameterized value, y. In particular, we have introduced
increasingly robust ways of measuring y, or to put it dif-
ferently, of fitting y to measurements, namely: the mean,
the median, and the mode (§2.1, §6). We have also intro-
duced techniques: (1) to more robustly identify outlying
deviations from y, for rejection (§2.2 – §3, §6); (2) to
more precisely measure y, without sacrificing robustness
(§4); and (3) to more rapidly measure y (§5).

In this section, we show that RCR can also be ap-
plied when measurements are distributed not about a
single, parameterized value, but about a parameterized
model, y ({x} | {θ}), where {x} are the model’s indepen-
dent variables, and {θ} are the model’s parameters. But
first, we must introduce new, increasingly robust ways
of fitting y ({x} | {θ}) to measurements, now given by{{

xi
+σx+,i
−σx−,i

}
, yi

+σy+,i
−σy−,i

}
. Specifically, these will be gen-

eralizations of the mean, the median, and the mode, that
reduce to these in the limit of a single-parameter fit, but
that result in best-fit, or baseline, models from which
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deviations can be calculated otherwise. Consequently,
these will be able to replace the mean, the median, and
the mode in the RCR algorithm, with no other modifi-
cation to the algorithm being necessary.

8.1. Generalized Measures of Central Tendency

Usually, models are fitted to measurements by maxi-
mizing a likelihood function.11 For example, if:

σx−,i ≈ σx+,i ≈ 0, (21)

σy−,i ≈ σy+,i ≈ σy,i, (22)

and

χ2 =
∑
i

[
yi − y ({x} | {θ})

σy,i

]2
≈ N −M, (23)

where N is the number of independent measurements,
and M is the number of non-degenerate model param-

eters, this function is simple: L ∝ e−χ
2/2, in which

case maximizing L is equivalent to minimizing χ2. If
these conditions are not met, L, and its maximization,
can be significantly more involved (e.g., Reichart 2001;
Trotter 2011). Regardless, such, maximum-likelihood,
approaches are generalizations of the mean, and conse-
quently are not robust.

To see this, again consider the simple case of the single-
parameter model: y ({x} | {θ}) = y. Minimizing Equa-
tion 23 with respect to y (i.e., solving ∂χ2/∂y = 0 for y)
yields a best-fit parameter value, and a best-fit model,
of y =

(∑
i yi/σ

2
y,i

)
/
(∑

i 1/σ2
y,i

)
= (
∑
i wiyi) / (

∑
i wi).

This is just the weighted mean of the measurements
(Equation 7), which is not robust.

One could imagine iterating between (1) maximizing
L to establish a best-fit model, and (2) applying robust
outlier rejection to the deviations from this model, but
given that (1) is not robust, this would be little bet-
ter than iterating with traditional Chauvenet rejection,
which relies on the weighted mean. Instead, we retain
the RCR algorithm, but replace the weighted mean, the
weighted median, and the weighted mode with general-
ized versions, maintaining the robustness, and precision,
of each. We generalize the weighted mean as above,
with maximum-likelihood model fitting. We generalize
the weighted median and the weighted mode as follows.

First, consider the case of an M -parameter model
where for any combination of M measurements, a unique
set of parameter values, {θ}j , can be determined.12

Furthermore, imagine doing this for all 1 ≤ j ≤
N !/ [M !(N −M)!] combinations of M measurements,13

11 Or, by maximizing the product of a likelihood function and a
prior probability distribution, if the latter is available.

12 In the event of redundant independent-variable information,
fewer than M parameter values can be determined, and we address
this case in §8.3.2. In the event of a periodic model, multiple M -
parameter solutions can be determined (some equivalent to each
other, some not), and we address this case in §8.3.3.

13 Or for as large of a randomly drawn (but without repetitions)
subset of these as is computationally reasonable. We switch over
to random draws, where each measurement is drawn in proportion
to its weight, when N !/ [M !(N −M)!] > 20, 000. For M = 2, this
corresponds to N > 200. For M = 3, this corresponds to N > 50.

and weighting each calculated parameter value by how
accurately it could be determined (see §8.2). Our gen-
eralizations are then given by: (1) the weighted

median of
{
{θ}j

}
, and (2) the weighted mode of{

{θ}j
}
.

Although more sophisticated implementations can
be imagined, here we define these quantities simply,
and such that they reduce to the weighted median and
the weighted mode, respectively, in the limit of the
single-parameter model, just as the maximum-likelihood
technique above reduces to the weighted mean in this
limit:

• For the weighted median of
{
{θ}j

}
, we calculate

the weighted median for each model parameter sep-
arately.

• For the weighted mode of
{
{θ}j

}
, we determine

the half-sample for each model parameter sepa-
rately, but then include only the intersection of
these half-samples in the next iteration.14

We demonstrate these techniques, and the maximum-
likelihood technique, for a simple, linear, but contami-
nated, model in Figure 34.

In Figure 35, we apply RCR as before (§4, §5), except
that we no longer use the weighted mode, the weighted
median, and the weighted mean to establish baseline val-
ues from which the deviations of the measurements can
be determined. Rather, we use our generalizations of
these, to establish baseline functions of {x}, of corre-
sponding robustness and precision, from which these de-
viations can, as before, be determined.15 Even in the
face of heavy contamination, this approach can be very
effective at recovering the original, underlying correla-
tion.

8.2. Implementation

In this section, we describe how M parameter values,
{θ}j , can be calculated from M measurements, both in

the simplest M > 1 case of a linear model (see §8.2.1),
and in general (see §8.2.2).12

We also describe how uncertainties, and hence weights,
can be calculated for each of these M parameter values.

14 In this case, iteration ends either: (1) as before, if the next
intersection would be unchanged (§2.1, §6), or (2) if the next in-
tersection would be null.

15 More model parameters means more degrees of freedom, and
consequently artificially smaller deviations for the same number
of measurements. To correct for this, we multiply our correction
factors (Figures 29 and 31) by (from Equation 8):√√√√(∑

i

wi −∆

∑
i w

2
i∑

i wi

)
/

(∑
i

wi −M∆

∑
i w

2
i∑

i wi

)
(24)

where the sums are over the non-rejected measurements. (For
N unweighted measurements, this corresponds to dividing by√
N −M , instead of by

√
N − 1, when calculating a (two-sided)

standard deviation, but this correction applies to our 68.3-
percentile deviation calculations as well.) This also prevents over-
rejection rates (§3.3.1) from increasing with M .
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Fig. 34.— Left column: 201 measurements, with fraction f1 = 1−f2 drawn from a Gaussian distribution of mean y(x) = x and standard
deviation 1, and fraction f2 = 0.15 (top row), 0.5 (middle row), and 0.85 (bottom row), representing contaminated measurements, drawn
from the positive side of a Gaussian distribution of mean zero and standard deviation 10, and added to uncontaminated measurements,
drawn as above. Right column: Model solutions, {θ}j , calculated from each pair of measurements in the panel to the left, using

y(x) = b + m (x− x), with x =
∑
i wixi/

∑
i wi (see §8.3.5), and for model parameters b and m. Each calculated parameter value is

weighted (see §8.2.1 or §8.2.2), and darker points correspond to models where the product of these weights is in the top 50%. The purple

circle corresponds to the original, underlying model, and in both columns, blue corresponds to the weighted mode of
{
{θ}j

}
, green

corresponds to the weighted median of
{
{θ}j

}
, and red corresponds to maximum-likelihood model fitting. The weighted mode of

{
{θ}j

}
performs the best, especially in the limit of large f2. Maximum-likelihood model fitting performs the worst. See Figure 35 for post-rejection
versions.
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Fig. 35.— Figure 34, after RCR. Here, we have performed bulk rejection as in §5, but using our generalization of the mode instead of the
mode, followed by individual rejection as in §4, using (1) our most-general robust technique for symmetrically distributed uncontaminated
measurements – now consisting of our generalization of the mode + technique 3 (the broken-line fit) – followed by (2) our most-precise robust
technique – now consisting of our generalization of the median + technique 1 (the 68.3% value) – followed by (3) traditional Chauvenet
rejection, but using our generalization of the mean instead of the mean (e.g., Figures 30, 28, and 19). RCR proves effective, even in the
face of heavy contamination.
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This depends on the locations and weights of the M mea-
surements, but it also depends on how one models their
scatter, about the best-fit model to all of the non-rejected
measurements. In §8.2.1 and §8.2.2, we present the sim-
plest, and most common, model for this scatter, in which
its RMS, at least for same-weight, uncontaminated mea-
surements, is taken to be the same, or constant, at all
locations, as it is in Figures 34 and 35. In §8.2.3, we con-
sider non-constant RMS scatter, and present its most
common case.

8.2.1. Simplest M > 1 Case: Linear Model with Constant
RMS Scatter

Consider a linear model given by y(x) = b+m (x− x).
For any M = 2 of the N measurements, (x1, y1) and
(x2, y2), one can calculate M = 2 parameter values, given
by:

m =
y2 − y1
x2 − x1

(25)

and

b =
x2 − x
x2 − x1

y1 −
x1 − x
x2 − x1

y2. (26)

The uncertainties in these values depend not only on the
statistical uncertainties in y1 and y2 – which may or may
not be known – but also on any systematic scatter in the
measurements, at x1 and x2.

Let σy(x) be a to-be-specified model for the RMS scat-
ter (statistical and/or systematic) of average-weight, un-
contaminated measurements, about the best-fit model to
all of the non-rejected measurements.

In the limit that σy(x) is purely statistical, the RMS
scatter of any-weight, uncontaminated measurements is
then given by (w/w)1/2σy(x), where w is measured
weight, and w is the average value of w for the uncon-
taminated measurements.

In the limit that σy(x) is purely systematic, statistical
error bars, and hence measured weights, do not matter,
and consequently, an unweighted fit should be performed
instead.16 Note, the same expression may be used for
the RMS scatter, but in this case, all measured weights
should be reset to a common value, such as w = w = 1.17

Given this expression for the RMS scatter, Equations
25 and 26, and standard propagation of uncertainties,
the uncertainties in m and b are then given by:

σm =

√√√√ wσ2
y(x2)

w2
+

wσ2
y(x1)

w1

(x2 − x1)2
(27)

16 Note, this is as much the case in §6 as it is here.
17 If in-between these two limiting cases, with statistical uncer-

tainty greater than systematic scatter for some measurements, and
less than it for the rest, one should also perform an unweighted
fit. In this case, most measurements with statistical uncertainty
� systematic scatter will be rejected as outlying (e.g., as out-
liers were rejected in Figure 35), but since these measurements
are, by definition, of low measured weight, they were not going to
significantly impact the fit anyway. However, if statistical uncer-
tainties are known, one could then calculate new weights, given

by
{

1 + [σi/σsys(xi)]
2
}−1

, where σsys(x) is the RMS scatter of

the non-rejected measurements about the unweighted fit, and then
perform a weighted fit.

and

σb =

√√√√ wσ2
y(x1)

w1
(x2 − x)2 +

wσ2
y(x2)

w2
(x1 − x)2

(x2 − x1)2
. (28)

Consequently, we weight m by wm ∝ σ−2m and b by wb ∝
σ−2b . Since w factors out, and is constant, it can be
ignored.

In the simplest, and most common, case, σy(x) = σy is
also constant, as it is in Figures 34 and 35. In this case, it
also factors out and can be ignored, yielding weights for
m and b that depend only on the locations and weights
of the M = 2 measurements from which they were cal-
culated:18

wm ∝
(x2 − x1)2

w−11 + w−12

(29)

and

wb ∝
(x2 − x1)2

(x1−x)2
w2

+ (x2−x)2
w1

. (30)

And again, (1) if all N of the measurements have the
same weight, and/or (2) if σy is dominated by systematic
scatter, these equations simplify even further, with w1 =
w2 = 1.

Note, if a parameter’s value is known to be more or
less probable a priori – i.e., if there is a prior probability
distribution for that parameter – the N !/ [M !(N −M)!]
weights that we calculate for that parameter (given by,
e.g., Equation 29 or 30) should be multiplied by the
prior probabilities of the N !/ [M !(N −M)!] values that
we calculate for that parameter (given by, e.g., Equation
25 or 26), respectively, to up- or down-weight them ac-
cordingly, before calculating their generalized median or
mode (§8.1).

8.2.2. General Case

Although many models can be solved for their M pa-
rameters analytically, given M measurements (e.g., as
the linear model in §8.2.1 is solved for m and b, given
two measurements), many models cannot be solved ana-
lytically. And even if a model can be solved analytically,
this is not always easy to do, nor can all solvable mod-
els be anticipated in advance. Consequently, in general,
we do this numerically, using the Gauss-Newton algo-
rithm,19 which requires only that the user supply (1) the
model, (2) its first partial derivative with respect to each
model parameter, to construct its Jacobian, and (3) an
initial guess, which usually has no bearing on the end
result (however, see §8.3.3).

Furthermore, the uncertainty, σθi , in each calculated
parameter value, θi, is straightforward to calculate, from

18 With non-linear models, w and σy (if constant) also factor
out and can be ignored. However, these weights, on the calcu-
lated parameter values, can also depend on the model parameters
themselves (see §8.2.2).

19 With one modification: Each time an iteration results in a
poorer fit, (1) we do not apply the increment vector, and (2) we
shrink it by 50% in future iterations. This helps to ensure local
convergence, in the case of periodic models (see §8.3.3).
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the same matrix that lies at the heart of the Gauss-
Newton algorithm, which, when N = M , is simply the
inverse Jacobian, J−1.

Let ~σy = (σy1 , ..., σyN=M
) be an array of hypotheti-

cal errors in each of the M measurements, each drawn
from a Gaussian of mean zero and standard deviation
(w/wi)

1/2σy({x}i) (§8.2.1). This corresponds to an ar-
ray of errors in the calculated parameter values, given by
J−1~σy. Next, imagine repeating these draws, and recal-
culating J−1~σy, an infinite number of times. Each σθi is
then given by the RMS of these arrays’ ith values. Math-
ematically, this is straightforward to calculate, and is
equivalent to setting each σyi = (w/wi)

1/2σy({x}i) and
calculating (σθ1 , ..., σθM ) = J−1~σy, except that terms in
this matrix-vector multiplication are instead summed in
quadrature (it is not difficult to show that in the case of
the linear model of §8.2.1, this yields Equations 27 and
28.)

And as in §8.2.1, the weight of each calculated param-
eter value is then given by wθi ∝ σ−2θi .

And as in Equations 29 and 30, w again factors out,
and since constant, can be ignored. Likewise, if σy({x})
can again be modeled as constant, it too factors out and
can be ignored. (If σy({x}) is not constant, it may be a
function of {x}, as well as of the model parameters; we
offer a common example in §8.2.3.)

However, unlike in Equations 29 and 30, and regard-
less of how σy({x}) is modeled, each wθi may now depend
on the model parameters (through J−1). Note however,
when calculating these weights, we do not use the cal-
culated parameter values, {θ}j , from the corresponding
M -measurement combination. Rather, we use those of
the most recent baseline model, determined from tak-
ing the generalized mode, the generalized median, or the

generalized mean of
{
{θ}j

}
in the most recent iteration

of the RCR algorithm (e.g., Figures 30 and 28). This
should be a significantly more accurate representation of
the underlying model than any individual {θ}j .

We also use these, significantly more accurate, param-
eter values as the starting point for the Gauss-Newton
algorithm in the next iteration of the RCR algorithm.
Only the starting point for the very first iteration need
be supplied by the user.20

8.2.3. Non-Constant RMS Scatter: Logarithmic Case

In general, σy({x}) may not be constant, in which case
a model must be provided for it by the user, just as a
model must be provided for y({x}) by the user. With no
additional work, we can support models for σy({x}) that
are proportional to any function of (1) the independent

20 As stated above, for most applications, the Gauss-Newton al-
gorithm yields the same result, {θ}j , regardless of the initial guess.

However, the generalized mode, median, or mean of
{
{θ}j

}
also

depends on each {θ}j ’s corresponding weight, which does depend

on the initial guess. Consequently, before beginning the RCR al-
gorithm, and bulk rejecting outliers, we iteratively measure the

generalized mode of
{
{θ}j

}
, without rejecting measurements, and

with each iteration implying new weights for
{
{θ}j

}
, until we con-

verge, from the user’s initial guess, to a starting point for the RCR
algorithm that is maximally consistent with the measurements.

variables, {x}, as well as (2) the model parameters. This
is because we already support dependencies on both of
these in the inverse Jacobian (§8.2.2). (As with σy in
§8.2.1 and §8.2.2, the constant of proportionality factors
out and can be ignored.)

How one models σy({x}) depends on the problem at
hand. As stated above, σy({x}) can usually be mod-
eled as constant and ignored. However, another com-
mon case arises when the user has a model y({x})
that can be linearized. For example, exponential and
power-law models can be linearized by taking a loga-
rithm of both sides: e.g., y(x) = bem(x−x) becomes

ln y(x) = ln b + m(x − x), and y(x) = b
(
x/eln x

)m
be-

comes ln y(x) = ln b+m(lnx− lnx).
This of course is fine, and even preferable, if the RMS

scatter about ln y({x}) can be modeled as constant: i.e.,
if σln y({x}) = σln y. However, often σy({x}) = σy is
constant, in which case σln y({x}) is then not constant,
and consequently must be modeled.

In this case, σ+ ln y({x}) ≈ ln [y({x}) + σy] −
ln y({x}) → σy/y({x}) and σ− ln y({x}) ≈ ln y({x}) −
ln [y({x})− σy] → σy/y({x}) when σy � y({x}),
and σ+ ln y → ln [σy/y({x})] and σ+ ln y → ∞ when
σy � y({x}) Since the σy � y({x}) measurements
are the most informative, one can approximate σln y ≈
σy/y({x}), which, conservatively, underestimates the
weights for the less-informative, σy & y({x}) measure-
ments.

In other words, logarithmic compression of constant
RMS scatter results in smaller RMS scatter, and hence
higher weights, for high-ln y({x}) measurements, and
larger RMS scatter, and hence lower weights, for low-
ln y({x}) measurements.

In the case of the linearized exponential model, Equa-
tions 29 and 30 then become:

wm ∝
(x2 − x1)2

w−11 y−2(x1) + w−12 y−2(x2)
(31)

and

wb ∝
(x2 − x1)2

(x1−x)2
w2y2(x2)

+ (x2−x)2
w1y2(x1)

, (32)

and in the case of the linearized power-law model, they
instead become:

wm ∝
(lnx2 − lnx1)2

w−11 y−2(x1) + w−12 y−2(x2)
(33)

and

wb ∝
(lnx2 − lnx1)2

(ln x1−ln x)2
w2y2(x2)

+ (ln x2−ln x)2
w1y2(x1)

. (34)

Note, these equations depend not only on the indepen-
dent variable, x, but now also on the model parameters,
m and b, through y(x), and consequently are evaluated
as prescribed in the second-to-last paragraph of §8.2.2.

However, although the linearization of these, and
other, models allows their parameters to be determined
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analytically, as in Equations 25 and 26, instead of numer-
ically as in §8.2.2, this really does not gain the user any-
thing, given the speeds of modern computers. Instead,
when possible, we recommend either leaving one’s model
in, or transforming one’s model to, whatever form yields
constant, or near-constant, RMS scatter about its best fit
to the non-rejected measurements, and then simply ap-
plying the all-purpose (linear and non-linear) machinery
of §8.2.2.21

8.3. Considerations, Limitations, and Examples

In this section, we present a few additional considera-
tions and limitations, and examples. In §8.3.1 – §8.3.3,
we consider special cases that while they do not change
how we calculate M -parameter solutions, {θ}j , from M

measurements (§8.2.2), they can affect how we calculate
the generalized mode, and sometimes also the general-
ized median, from a full set of N !/ [M !(N −M)!] M -

parameter solutions,
{
{θ}j

}
(§8.1). In §8.3.4, we show

that RCR becomes less robust as M increases, and this
appears to be a fundamental limitation of our approach.
And finally, in §8.3.5 and §8.3.6, we discuss the impor-
tance of good modeling practices, both in general, but
also specifically to RCR.

8.3.1. Measurements that Cannot Be Described by the
Model

Due to statistical and/or systematic scatter, some com-
binations of M measurements, even M uncontaminated
measurements, might not map to any combination of val-
ues for a model’s M parameters.

For example, consider an exponential model that
asymptotes from positive values to zero as x→∞ (e.g.,
y(x) = bem(x−x), with b > 0 and m < 0), but with
measurements, yi, that are occasionally negative due to
statistical and/or systematic scatter. Since all combina-
tions of values for b and m yield only-positive or only-
negative values for y(x), if presented with an oppositely
signed pair of measurements, our Gauss-Newton algo-
rithm (§8.2.2) will instead run away to one of the fol-
lowing, limiting solutions, depending on the values of xi,
yi, and x: m = −∞ or ∞, and b = −∞, 0, ∞, or the
value of the positive measurement (if xi happens to equal
x). Note, such solutions are easily flagged, since the fit-
ted model does not (cannot) pass through all M of the
measurements (e.g., resulting in a non-zero χ2 value).

Although extreme, and not fully representative of the
measurements that produced them, we do not exclude
such solutions when calculating the weighted median of

21 That said, both approaches usually yield near identical re-
sults. Modeling exponential or power-law data with parameters b
and m, instead of linearized data with ln b and m, yields (1) a dif-
ferent inverse Jacobian (§8.2.2), and (2) a different model for the
RMS scatter, σy(x) vs. σln y(x). But together these yield the same
expressions for wb = wln b and wm (up to factors of proportional-
ity that do not matter). Consequently, the only difference is how

concentrated the calculated parameter values,
{
{θ}j

}
, are, which

does not affect the weighted median of
{
{θ}j

}
, but can affect the

weighted mode of
{
{θ}j

}
: Using b instead of ln b favors lower val-

ues, but usually only marginally. This is known as choice of basis,
which we return to §8.3.6.

{
{θ}j

}
: To do so could bias the result (in this particular

example, toward higher values of b and shallower values
of m). At the same time, we do exclude such solutions

when calculating the weighted mode of
{
{θ}j

}
, lest any

of these parameter values be returned artificially (e.g., in
this case, they could result in a meaningless, but statis-
tically significant, overdensity of b = 0 values).

We demonstrate RCR applied to such an exponential
model in Figures 36 and 37, and despite a fair number
of yi < 0 measurements at high-x values, it converges to
an acceptable solution in all but the most contaminated
case.

8.3.2. Combinations of M Measurements with Redundant
Independent-Variable Information

Combinations of M measurements with redundant
independent-variable information cannot be used to de-
termine all M of a model’s parameters. Furthermore,
if, in this case, any of the model’s parameters can be
determined, they will be overdetermined.

For example, consider a planar model, constrained by
three measurements. If these measurements happen to
be co-linear, all three of the model’s parameters cannot
be determined. However, if this line happens to run par-
allel to one of the model’s axes, at least one, and possi-
bly two, of the model’s parameters (i.e., the plane’s slope
along this axis, and the plane’s normalization, if defined
along this line) can be determined. But they will be
overdetermined, given three measurements for only one
or two parameters.

In the interest of simplicity, we discard these (usually
rare) combinations completely, noting that uncontam-
inated measurements selected in this way are unlikely
to be preferentially under- or over-estimates, and conse-
quently their exclusion is unlikely to bias calculation of

the weighed median of
{
{θ}j

}
, let alone of the weighted

mode of
{
{θ}j

}
. However, more sophisticated imple-

mentations can also be imagined.
Note, such cases are also easily flagged, in that the

Jacobian in §8.2.2 is not invertible (i.e., its determinant
is zero).

8.3.3. Combinations of M Measurements that Can Be
Described by Multiple Model Solutions

Periodic models require a bit more care, in that each
combination of M measurements can be described by a
countably infinite number of model solutions, including
not only solutions that are equivalent to each other, but
also shorter-period, overtone solutions that are not. Both

can bias calculation of the weighted median of
{
{θ}j

}
,

and of the weighted mode of
{
{θ}j

}
.

For example, consider the simple, periodic model
y(x) = b sinm(x− x0). The same measurements can
result in model solutions that are equivalent to each
other (1) by reflection about both the x and y axes,
(2) by translation along the x axis, by multiples of 2π/m,
and/or (3) by translation along the x axis by odd mul-
tiples of π/m, in combination with a reflection about
the x axis. Consequently, once the Gauss-Newton al-
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Fig. 36.— Left column: 101 measurements, with fraction f1 = 1−f2 drawn from a Gaussian distribution of mean y(x) = 10e−(x−0.5) and
standard deviation 1, and fraction f2 = 0.15 (top row), 0.5 (middle row), and 0.85 (bottom row), representing contaminated measurements,
drawn from the positive side of a Gaussian distribution of mean zero and standard deviation 10, and added to uncontaminated measurements,
drawn as above. Right column: Model solutions, {θ}j , calculated from each pair of measurements in the panel to the left, using

y(x) = bem(x−x), with x =
∑
i wixiy

2(xi)/
∑
i wiy

2(xi) (see §8.3.5), and for model parameters ln b and m (see §8.3.6). Each calculated
parameter value is weighted (§8.2.2), and darker points correspond to models where the product of these weights is in the top 50%. The

purple circle corresponds to the original, underlying model, and in both columns, blue corresponds to the weighted mode of
{
{θ}j

}
,

green corresponds to the weighted median of
{
{θ}j

}
, and red corresponds to maximum-likelihood model fitting. The contaminants have a

greater, relative, effect on the high-x/low-y measurements than on the low-x/high-y measurements, biasing the calculated models toward

shallower slopes and higher normalizations (i.e., toward the upper right, in the panels on the right). The weighted mode of
{
{θ}j

}
most

successfully overcomes this bias as f2 → 0.5, but all three techniques fail as f2 → 0.85. See Figure 37 for post-rejection versions.
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Fig. 37.— Figure 36, after RCR. Here, we have again performed bulk rejection as in §5, but using our generalization of the mode
instead of the mode, followed by individual rejection as in §4, using (1) our most-general robust technique for symmetrically distributed
uncontaminated measurements – now consisting of our generalization of the mode + technique 3 (the broken-line fit) – followed by
(2) our most-precise robust technique – now consisting of our generalization of the median + technique 1 (the 68.3% value) – followed by
(3) traditional Chauvenet rejection, but using our generalization of the mean instead of the mean (e.g., Figures 30, 28, and 19). RCR
proves effective in the face of fairly heavy contamination, but is unable to overcome bias introduced by the contaminants (Figure 35) as
f2 → 0.85.
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gorithm (§8.2.2) finds one of these solutions, we give
the user the option to map it to a designated simplest
form. For example, with this model: (1) If m < 0, map
m → −m and b → −b; (2) then if m|x0| ≥ 2π, map

x0 → x0− 2πx0

m|x0|floor
(
m|x0|
2π

)
; and (3) then if m|x0| ≥ π,

map x0 → x0 − πx0

m|x0| and b→ −b.
In the case of shorter-period/higher-m, overtone solu-

tions, which solution the Gauss-Newton algorithm finds
depends on the initial guess that it is given. This is anal-
ogous to centroiding algorithms in astrometry. If a user
clicks anywhere in a star’s vicinity, such algorithms ar-
rive at the same solution for the star’s center. But if
the user clicks too far away, another star’s center will be
found instead. We have modified the Gauss-Newton al-
gorithm to help ensure local convergence (Footnote 19),
but ultimately it is up to the user to make a reasonable
(in this case, low-m) initial guess.

We demonstrate RCR applied to this model in Figures
38 and 39, using the same contamination fractions as in
Figures 34 – 37. The combination of re-mapping equiv-
alent solutions, and of making a reasonable initial guess,
results in good outcomes through fairly high contamina-
tion fractions (however, see §8.3.4).

8.3.4. RCR Less Robust as M Increases

If a fraction, 1− f , of N measurements is uncontami-

nated, a smaller fraction, (1− f)
M

, of the corresponding

N !/ [M !(N −M)!] model solutions,
{
{θ}j

}
, is uncon-

taminated. So, the higher the dimension of the model,
and hence of the model’s parameter space, the more dif-
ficult it becomes for our generalization of the mode, in
particular, to latch on to a desirable solution. Or to put
it another way, the higher M , the lower f beyond which
RCR fails. This appears to be a fundamental limita-
tion of our approach, and one that can be only partially
mitigated by a (significantly) larger number of measure-
ments.22

This can be seen by the greater degree of scatter in the
M = 3 parameter-space plots in Figure 38, compared
to that of the M = 2 parameter-space plots in Figures
34 and 36, and by the fact that this greater degree of
scatter could not be successfully resolved in the f = 0.85
row in Figure 39, despite the contaminants not biasing
the calculated parameter values in a systematic direc-
tion, as they did in Figures 36 and 37. (See Figures 41
and 42 for another M = 3 example, with similar results.)

8.3.5. Avoid Introducing Unnecessary Correlations between
Calculated Parameter Values through Good Model

Design

Naturally, our generalization of the mode, in partic-
ular, is most effective if the uncontaminated subset of{
{θ}j

}
is maximally concentrated. However, this can

depend on how wisely, or poorly, one constructs their
model.

22 Other approaches can be envisioned, in which combinations of
more than M measurements are used to calculate model solutions,
with RCR employed at this stage as well, to reduce the fraction of
these that are contaminated. However, this is beyond the scope of
this paper.

For example, consider a linear model, given by y(x) =
b + m (x− x), with constant RMS scatter, σy(x) = σy.
In this case, x is usually given by x =

∑
i wixi/

∑
i wi,

which results in a largely uncorrelated, near-maximally
concentrated distribution of, at least the highest-weight,
b vs. m values (e.g., Figures 34 and 35).23

However, a significantly different choice for x would
introduce a correlation between the calculated values of
b and m, resulting in a dispersed, and hence not near-
maximally concentrated, distribution (we demonstrate
this for a different, but similar, case in the bottom row of
Figure 40; see below). This can make our generalization
of the mode, in particular, and hence RCR, less precise,
and in this case, unnecessarily.

Note, this is not always the best expression for x. For
example, consider either an exponential model, given
by y(x) = bem(x−x), or a power-law model, given

by y(x) = b
(
x/eln x

)m
, with constant RMS scatter,

σy(x) = σy. If m < 0, high-x measurements may
be scatter-dominated and not contribute significantly to
the fit, and consequently should not contribute signifi-
cantly to x (and vice versa if m > 0, with low-x mea-
surements). However, if linearized (§8.2.3), resulting in
ln y(xi) vs. xi data for the exponential model and ln y(xi)
vs. lnxi data for the power-law model, all measure-
ments would contribute to the fit, but with additional
weights given by σ−2ln y(xi) ∝ y2(xi) (§8.2.3). Hence, we

take x =
∑
i wixiy

2(xi)/
∑
i wiy

2(xi) for the exponen-

tial model, and lnx =
∑
i wi(lnxi)y

2(xi)/
∑
i wiy

2(xi)
for the power-law model (whether the model has been
linearized or not).24 We demonstrate the effectiveness of
this in Figure 40.

Sometimes, however, these correlations cannot be
avoided. For example, if presented with quadratic yi
vs. xi data, one can design away correlations between
two of the three pairings of the model’s three parame-
ters, but not between all three pairings simultaneously:
If one models these data with y(x) = b + m1 (x− x) +

m2 (x− x)
2
, with x =

∑
i wixi/

∑
i wi, both (1) the

highest-weight b vs. m1 values and (2) the highest-weight
m1 vs. m2 values will, for the most part, be uncorrelated,
but the highest-weight b vs. m2 values will be marginally
(negatively) correlated (see Figure 41). Despite this,
RCR is still effective through fairly high contamination
fractions, which we demonstrate in Figure 42.

Of course, more sophisticated implementations can be
imagined, in which one would not have to consider these
correlations at all. For example, instead of determining

(1) the weighted median of
{
{θ}j

}
and especially

(2) the weighted mode of
{
{θ}j

}
along the given

parameter-space coordinate system, as we do in this
paper (§8.1), one could imagine doing this (or perhaps

23 We calculate x using only non-rejected measurements, and
consequently, we update x after each iteration of the RCR algo-
rithm.

24 Here, x and lnx additionally depend on model parameters,
through y(x). But as we do when calculating parameter weights
in §8.2.3, we use the parameter values of the most recent baseline
model, from the most recent iteration of the RCR algorithm. This
should be significantly more accurate than using, say, individual yi
measurements for y(xi).
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Fig. 40.— Left column: 101 uncontaminated measurements, drawn from a Gaussian distribution of mean y(x) = 10e−(x−0.5) and
standard deviation 1. Right column: Model solutions, {θ}j , calculated from each pair of measurements in the panel to the left, using

y(x) = bem(x−x), with x calculated as described below, and for model parameters ln b and m (see §8.3.6). Each calculated parameter
value is weighted (§8.2.2), and darker points correspond to models where the product of these weights is in the top 50%. The purple circle

corresponds to the original, underlying model, and in both columns, blue corresponds to the weighted mode of
{
{θ}j

}
, green corresponds

to the weighted median of
{
{θ}j

}
, and red corresponds to maximum-likelihood model fitting. Top row: Here, we additionally weight each

xi by σ−2
ln y (xi) ∝ y2 (xi) when calculating x, which results in a fairly uncorrelated/fairly concentrated distribution for the highest-weight

ln b vs. m values, and consequently, the weighted mode of
{
{θ}j

}
, in particular, is less susceptible to imprecision. Bottom row: Here, we

do not additionally weight each xi when calculating x, which results in a strongly correlated/dispersed distribution for the highest-weight

ln b vs. m values, and consequently, the weighted mode of
{
{θ}j

}
, in particular, is more susceptible to imprecision.

something else a bit more sophisticated) in a rotated,
or even non-linearly transformed, coordinate system,
with a principal axis determined (robustly) from the
calculated parameter values and weights. This is beyond
the scope of the current work, but would be a natural
next investigation.

8.3.6. Make Good Basis Decisions

Another example of good model design is proper choice

of basis. For example, when fitting an exponential
model, e.g., y(x) = bem(x−x), or a power-law model, e.g.,

y(x) = b
(
x/eln x

)m
, to measurements, one usually calcu-

lates ln b and m, instead of b and m (e.g., Figures 36, 37,
and 40). This is called choice of basis. When perform-
ing maximum-likelihood model fitting, basis choices (like
normalization choices; §8.3.5) do not affect the best fit,
but good ones can yield more concentrated/symmetric
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Fig. 41.— Upper left: 43 uncontaminated measurements, drawn from a Gaussian distribution of mean y(x) = 10 (x− 0.5)+20 (x− 0.5)2

and standard deviation 1. Upper right and bottom row: Model solutions, {θ}j , calculated from each triplet of measurements in the

upper-left panel, using y(x) = b + m1 (x− x) + m2 (x− x)2, with x =
∑
i wixi/

∑
i wi, and model parameters b, m1, and m2. Each

calculated parameter value is weighted (§8.2.2), and darker points correspond to models where the product of these weights is in the top

50%. The purple circle corresponds to the original, underlying model, and in all panels, blue corresponds to the weighted mode of
{
{θ}j

}
,

green corresponds to the weighted median of
{
{θ}j

}
, and red corresponds to maximum-likelihood model fitting. The highest-weight b vs.

m1 values, corresponding to linear yeff (x) ≡ y(x)−m2 (x− x)2 = b+m1 (x− x), and the highest-weight m1 vs. m2 values, corresponding
to linear yeff (x) ≡ [y(x)− b] /(x− x) = m1 +m2 (x− x), are largely uncorrelated, but the highest-weight b vs. m2 values, corresponding

to non-linear yeff (x) ≡ y(x)−m1 (x− x) = b+m2 (x− x)2, are marginally, negatively correlated: Since (x− x)2 is always positive, if m2
is high, b tends to be low, to compensate.

probability distributions for the model’s parameters, and
consequently, more concentrated/symmetric error bars
for these parameters.

Similarly, good basis choices can yield more concen-
trated/symmetric distributions of calculated parameter

values,
{
{θ}j

}
. While this does not affect the weighed

median of
{
{θ}j

}
, as in §8.3.5, it can affect the weighted

mode of
{
{θ}j

}
.

That said, as long as one’s uncontaminated measure-
ments are not scatter-dominated, this is usually a very
small effect, and multiple, equivalent parameterizations
are perfectly acceptable.25

Application of RCR to parameterized models is po-
tentially a very broad topic, with applications spanning
not only science, but all quantitative disciplines. Here,
we have but scratched the surface with a few, simple

25 Another example is using tanm instead of m for slopes when
they are very large.
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Fig. 42.— Left column: 43 measurements, with fraction f1 = 1− f2 drawn from a Gaussian distribution of mean y(x) = 10 (x− 0.5) +

20 (x− 0.5)2 and standard deviation 1, and fraction f2 = 0.15 (top row), 0.5 (middle row), and 0.85 (bottom row), representing contaminated
measurements, drawn from the positive side of a Gaussian distribution of mean zero and standard deviation 10, and added to uncontaminated

measurements, drawn as above. Blue corresponds to the weighted mode of
{
{θ}j

}
, green corresponds to the weighted median of

{
{θ}j

}
,

and red corresponds to maximum-likelihood model fitting. Right column: After RCR. Here, we have again performed bulk rejection as in
§5, but using our generalization of the mode instead of the mode, followed by individual rejection as in §4, using (1) our most-general robust
technique for symmetrically distributed uncontaminated measurements – now consisting of our generalization of the mode + technique 3
(the broken-line fit) – followed by (2) our most-precise robust technique – now consisting of our generalization of the median + technique 1
(the 68.3% value) – followed by (3) traditional Chauvenet rejection, but using our generalization of the mean instead of the mean (e.g.,
Figures 30, 28, and 19). RCR proves effective in the face of fairly heavy contamination, but is unable to overcome the greater fraction of
contaminated models as f2 → 0.85 (§8.3.4).
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examples.

9. PEIRCE REJECTION

Traditional Chauvenet rejection is sigma clipping plus
a rule for selecting a reasonable number of sigma for the
threshold, given N measurements (§1). It is straightfor-
ward to use, and as such has been adopted as standard by
many government and industry laboratories, and is com-
monly taught at universities (Ross 2003). However, it is
not the only approach one might take to reject outliers.
For example, even Chauvenet (1863) deferred to Peirce’s
approach (1852; Gould 1855),26 which has recently seen
new life with its own implementation in the R program-
ming language (Dardis 2012). Instead of assuming 0.5
in Equation 1, Peirce derives this value from probabil-
ity theory, and finds (1) that it is weakly dependent on
N , asymptoting to 0.5 as N increases, and (2) that it
decreases with subsequent rejections.

However, unlike Peirce’s approach, Chauvenet rejec-
tion is amenable to (1) N , (2) the mean, and (3) the stan-
dard deviation being updated after each rejection (§1).
Peirce’s approach requires all three of these quantities
to remain fixed until all rejections have been completed,
and as such Peirce rejection is less robust than Chau-
venet rejection, at least when the latter is implemented
iteratively, as we have done.

Furthermore, our correction factors (§2.3, §4 – §6) em-
pirically account for the above, weak dependence on N ,
as well as for differences in implementation (e.g., our use
of one-sided deviation measurements, our use of robust
quantities, etc.)

In Figures 43 – 46, we compare Peirce rejection (1) to
traditional Chauvenet rejection and (2) to RCR, for
both two-sided and one-sided contaminants. Given our
iterative implementation, and our correction factors, we
find traditional Chauvenet rejection to be comparable
to Peirce rejection when the contaminants are two-sided
and N is low, and better than Peirce rejection other-
wise. RCR is significantly better than both of these
approaches.

10. SUMMARY

The most fundamental act in science is measurement.
By combining multiple measurements, one can better

constrain a quantity’s true value, and its uncertainty.
However, measurements, and consequently samples of
measurements, can be contaminated. Here, we have in-
troduced, and thoroughly tested, an approach that, while
not perfect, is very effective at identifying which mea-
surements in a sample are contaminated, even if they
constitute most of the sample, and especially if the con-
taminants are strong (making contaminated measure-
ments easier to identify).

In particular, we have considered:

• Both symmetrically (§3.1) and asymmetrically
(§3.2) distributed contamination of both sym-
metrically (§3.1, §3.2, §3.3.2) and asymmetri-
cally (§3.3.1) distributed uncontaminated measure-
ments, and have developed robust outlier rejection
techniques for all combinations of these cases.

• The tradeoff between these techniques’ accuracy
and precision, and have found that by applying
them in sequence, from more robust to more pre-
cise, both can be achieved (§4).

• The practical cases of bulk rejection (§5), weighted
data (§6), and model fitting (§8), and have gener-
alized the RCR algorithm accordingly.

Finally, we have developed a simple web interface so
anyone can use the RCR algorithm.27 Users may upload
a data set, and select from the above scenarios. They are
returned their data set with outliers flagged, and with µ1

and σ1 robustly measured. Source code is available here
as well.
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1211782, and 1517030, ISE 1223235, hbcu-up 1238809,
TUES 1245383, and STEM+C 1640131. We are also
appreciative to have been supported by the Mt. Cuba
Astronomical Foundation, the Robert Martin Ayers Sci-
ences Fund, and the North Carolina Space Grant Con-
sortium. We also thank the referee, and the editor, for
comments that helped us to improve this paper consid-
erably.

APPENDIX

A. BROKEN-LINE FIT THROUGH ORIGIN

Let xi =
√

2erf−1[(i− 0.317)/N ] and yi = δi. We model these data as a broken line that passes through the origin:

y =

{
σ1x, if i ≤ m
σ1xm + σ2(x− xm), if i ≥ m and xi ≤ 1

, (A1)

where σ1 is the slope of the line for i ≤ m, and our modeled 68.3-percentile deviation, and σ2 is the slope of the line
for i ≥ m and xi ≤ 1. We model the break to occur at xm, instead of between points, for simplicity.

Let the fitness of this three-parameter model be measured by:

χ2
3 =

N ′∑
i=1

[y(xi|σ1, σ2,m)− yi]2, (A2)

26 It is interesting to note that this topic, although statistical in
nature, originates in the field of astronomy. Two of these publi-
cations are in the early volumes of the Astronomical Journal, and

the third, Chauvenet’s “A Manual of Spherical and Practical As-
tronomy”, was a standard reference for decades.

27 https://skynet.unc.edu/rcr

http://arxiv.org/abs/hbcu-up/1238809
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where N ′ = floor(0.683N + 0.317) is the number of points for which xi ≤ 1. Then for a given break point, m, the best
fit is given by dχ2

3/dσ1 = dχ2
3/dσ2 = 0, yielding:

[
σ1
σ2

]
=


m∑
i=1

x2i + x2m
N ′∑

i=m+1

1 xm
N ′∑

i=m+1

(xi − xm)

xm
N ′∑

i=m+1

(xi − xm)
N ′∑

i=m+1

(xi − xm)2


−1 

m∑
i=1

xiyi + xm
N ′∑

i=m+1

yi

N ′∑
i=m+1

(xi − xm)yi

 . (A3)

We use a recursive partitioning algorithm to efficiently find the value of m for which χ2
3 is minimized. We restrict

m > 1 to avoid the following pathological case: If µ is measured by the median and N is odd, one of the measured
values will always equal the median value, and consequently y1 will always be zero; m = 1 would then imply σ1 = 0,
but without meaning.

Statistical equivalence to an unbroken-line fit through the origin (§2.2) can similarly result in spurious values of σ1:
In this case, any fitted value of m is possible, and the lower it happens to be, the less well constrained σ1 will be.
Consequently, if statistically equivalent, we instead use the value of σ from the unbroken-line fit through the origin.
We measure statistical equivalency by:

χ2
1 − χ2

3

χ2
3

< f(N), (A4)

where χ2
1 is the fitness of the one-parameter, unbroken-line fit, and f(N) would be ≈2.3N ′ if the points to which

we are fitting were statistically independent of each other, but because we are fitting to sorted data, this is not
the case. Consequently, we determined f(N) empirically: For each technique and sample size N , we drew 100,000
uncontaminated samples, measured (χ2

1 −χ2
3)/χ2

3 for each, sorted these values, and took the 68.3-percentile value (see
Figure 47).

Otherwise, we only restrict σ1 to be positive.
Finally, when fitting to weighted data (§6):

• xi is instead given by
√

2erf−1(si/
∑N
i=1 wi), where si is given by Equation 18, and wi is the weight of the ith

point;

• N ′ is instead given by the largest integer such that sN ′ ≤ 0.683
∑N
i=1 wi;

• Each term summed over i in χ2
1 and χ2

3 (Equation A2) and Equation A3 is multiplied by wi; and

• f(N) instead depends on the weights of the data. To this end, for the three scenarios that we consider in §6
that make use of technique 3 (the broken-line fit), corresponding to all but the upper-right panel of Figure 31,
we have computed f(N) for the same five, representative weight distributions (see Figure 48, solid curves).
From these, we have similarly produced empirical approximations, as functions of (1) N and (2) σw/µw of the

xi =
√

2erf−1(si/
∑N
i=1 wi) < 1 points, which can be used with any sample of similarly distributed weights

(Figure 48, dashed curves; see Appendix B). We demonstrate these for the latter three weight distributions in
columns 6 – 8, respectively, of Figures 20 – 27, and, desirably, they do not differ significantly from those of
column 5, in which σw/µw = 0.

B. EMPIRICAL APPROXIMATIONS FOR F (N) AND CORRECTION FACTORS

For each scenario and technique presented in this paper, we calculated f(N) (Appendix A) beyond N = 1000 and
correction factors (Figures 4, 29, and 31) beyond N = 100, every 0.1 dex for an additional 1 – 2 dex, until it became
computationally inefficient to continue.

For the cases involving data of equal weight, we fitted functions of N to these calculated values, yielding empirical
approximations (Tables 2 – 5).

For the cases involving a distribution of weights, characterized by σw/µw of the xi =
√

2erf−1(si/
∑N
i=1 wi) < 1

points (§6, Appendix A), we fitted functions of both (1) N and (2) σw/µw to the calculated values, yielding empirical
approximations that can be used with any sample of similarly distributed weights.

For the “single σ” scenario, appropriate for two-sided contaminants (§3.1), f(N) is given by:

f(N) = f1(N)1010
a1(N)+b1(N) log10( σwµw )

, (B1)

where f1(N) is the value of f(N) for data of equal weight, corresponding to σw/µw = 0, and a1(N ≤ 7) and b1(N ≤ 7)
are listed in Table 6. For 7 < N ≤ 1000:

a1(N) = 0.2313(log10N)6 − 3.02(log10N)5 + 15.997(log10N)4 − 43.713(log10N)3 + 64.629(log10N)2

− 49.976 log10N + 15.484 + 0.1513(−1)NN−0.471,
(B2)
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Fig. 47.— f(N) vs. N , for sorted, but otherwise independent data, where deviations have been measured from (1) the median (green)
and (2) the mode (blue). Upper left: For the simplest case of computing a single σ1, using the deviations both below and above µ (the
median or the mode; §3.1). Lower left: For the case of computing separate σ1 below and above µ and computing (χ2

1−χ2
3)/χ2

3 for only the

smaller of the two (§3.2). Lower right: For the same case, but computing (χ2
1 − χ2

3)/χ2
3 for either of the two, selected randomly (§3.3.1).

Oscillations are not noise, but odd-even effects (e.g., with equally weighted data, when N is odd, use of the median always results in at
least one zero deviation, resulting in a larger value of (χ2

1 − χ2
3)/χ2

3. We use look-up tables for N ≤ 1000 and empirical approximations for
f(N > 1000) (see Appendix B).

and

b1(N) = −0.3556(log10N)6 + 3.7036(log10N)5 − 14.932(log10N)4 + 29.176(log10N)3 − 28.81(log10N)2

+ 14.397 log10N − 2.64511.
(B3)

For N > 1000, f(N) = f1(N).
For this scenario and the “bulk rejection (median) + RCR (median-T3) + RCR (median-T1) + CR” technique, the

correction factor is given by:

CF (N) =

CF1(N)1010
a(N)+b(N) log10( σwµw )

N = 2, N = 4, N > 5

CF1(N)10−10
a(N)+b(N) log10( σwµw )

N = 3, N = 5
, (B4)

where CF1(N) is the value of CF (N) for data of equal weight, corresponding to σw/µw = 0, and a(N ≤ 5) and
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Fig. 48.— Same as the green, blue, and blue curves from the upper-left, lower-left, and lower-right panels of Figure 47, respectively,
corresponding to what is needed for our best-option robust techniques (§4), but for five representative weight distributions: (1) all weights
equal (solid black curves – same as the designated curves from Figure 47); (2) weights distributed normally with standard deviation
as a fraction of the mean σw/µw = 0.1 (solid red curves); (3) weights distributed normally with σw/µw = 0.3 (solid green curves);
(4) weights distributed uniformly from zero (i.e., low-weight points as common as high-weight points; solid blue curves), corresponding
to σw/µw ≈ 0.58; and (5) weights distributed inversely over one dex (i.e., low-weight points more common than high-weight points, with
the sum of the weights of the low-weight points as impactful as the sum of the weights of the high-weight points; solid purple curves),
corresponding to σw/µw ≈ 0.73. From these, we have produced empirical approximations, as functions of (1) N and (2) σw/µw of the

xi =
√

2erf−1(si/
∑N
i=1 wi) < 1 points, which can be used with any sample of similarly distributed weights (dashed curves; see Appendix

B).

b(N ≤ 5) are listed in Table 7. For N > 5:

a(N) = −0.7914 log10N + 0.0243 (B5)

and
b(N) = 0.1196 log10N + 4.5073. (B6)

For the “smaller of σ− and σ+” scenario, appropriate for one-sided contaminants and in-between cases (§3.2),
f(N ≤ 264) is given by Equation B1, f(264 < N ≤ 567) is given by:

f(N) =


f1(N)1010

a1(N)+b1(N) log10( σwµw )
a1(N) + b1(N) log10

(
σw
µw

)
> a2(N) + b2(N) log10

(
σw
µw

)
f1(N) a1(N) + b1(N) log10

(
σw
µw

)
= a2(N) + b2(N) log10

(
σw
µw

)
f1(N)10−10

a2(N)+b2(N) log10( σwµw )
a1(N) + b1(N) log10

(
σw
µw

)
< a2(N) + b2(N) log10

(
σw
µw

) , (B7)
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TABLE 2
Empirical Approximations for f(N > 1000)a

Scenario Median Mode

Single σ 1.90 39.2519N−0.7969 + 1.8688

Smaller of σ− and σ+ 1.90 1.3399N
0.1765

Random of σ− and σ+ 1.90 1.2591N
0.2052

a For data of equal weight (Appendix A). The latter two ap-
proximations should be used with caution beyond N ∼ 106.

TABLE 3
Correction Factors for the “Single σ” Scenarioa

Technique Correction Factor

Mean-Standard Deviation (No Rejection) (1− 0.2897N−1.033)−1

CR (Mean-Standard Deviation) (1− 0.7240N−0.773)−1

RCR (Median-Technique 1) (1− 1.7198N−1.022)−1

RCR (Median-Technique 2) (1− 2.9442N−1.073)−1

RCR (Median-Technique 3) (1− 4.2145N−1.153)−1

RCR (Mode-Technique 1) 1− 0.1052
(N/41.99)−0.5328+(N/41.99)0.4130

RCR (Mode-Technique 2) 1− 0.05104
(N/104.9)−3.2545+(N/104.9)0.3444

RCR (Mode-Technique 3) (1− 2.1893N−0.803)−1

RCR (Median-T3) + CR (1− 4.2134N−0.971)−1

RCR (Median-T3) + RCR (Median-T1) + CR (1− 4.3185N−0.975)−1

Bulk Rejection (Median) + RCR (Median-T3) + RCR (Median-T1) + CR (1− 3.5780N−0.942)−1

a For data of equal weight (§2.3, §3.1, §4, §5). Appropriate for two-sided contaminants. Empirical approximations
are for N > 100.

and f(N > 567) is given by:

f(N) = f1(N)10−10
a2(N)+b2(N) log10( σwµw )

, (B8)

where a1(N ≤ 8) and b1(N ≤ 8) are listed in Table 6.28 For 8 < N ≤ 1000:

a1(N) = −0.541(log10N)5 + 4.6943(log10N)4 − 15.407(log10N)3 + 21.875(log10N)2 − 11.211 log10N − 0.3798, (B9)

b1(N) = 0.1462(log10N)3 − 4.2139(log10N)2 + 14.366 log10N − 10.658, (B10)

a2(N) = 18.149(log10N)3 − 149.27(log10N)2 + 410.15 log10N − 378.47, (B11)

and
b2(N) = 26.945(log10N)3 − 221.42(log10N)2 + 606.91 log10N − 553.89. (B12)

For N > 1000:
a2(N) = 0.3861 log10N − 2.5852 (B13)

and
b2(N) = 0.0424 log10N + 1.4479. (B14)

This approximation should be used with caution beyond N ∼ 106.
For this scenario and the “bulk rejection (mode) + RCR (mode-T1) + RCR (median-T1) + CR” technique, the

correction factor is given by:

CF (N) =

{
CF1(N)1010

a(N)+b(N) log10( σwµw )
N = 2, N = 3, N > 4

CF1(N) N = 4
, (B15)

where a(N ≤ 5) and b(N ≤ 5) are listed in Table 7. For 5 < N ≤ 100:

a(N) = −1.1937(log10N)4 + 6.5268(log10N)3 − 13.308(log10N)2 + 11.432 log10N − 4.4769 (B16)

and

b(N) = −1.4528(log10N)3 + 5.3519(log10N)2 − 5.33 log10N + 2.2902 + 0.1879(−1)N (log10N)0.9521. (B17)

28 When N = 5, technique 3 (the broken-line fit) always defaults
to technique 2 (the linear fit) if the data are weghted equally (Fig-
ure 4), leaving f1(5) undefined. However, this is not always the

case if the data are not weighted equally. Consequently, we must
define f1(5) before determining a1(5) and b1(5). To this end, we
adopt f1(5) = 36.8534, by extrapolation.
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TABLE 4
Correction Factors for the “Smaller of σ− and σ+” Scenarioa

Technique Correction Factor

Mean-Standard Deviation (No Rejection) (1− 0.5092N−0.514)−1

CR (Mean-Standard Deviation) (1− 0.6939N−0.522)−1

RCR (Median-Technique 1) (1− 1.3320N−0.549)−1

RCR (Median-Technique 2) (1− 1.5058N−0.559)−1

RCR (Median-Technique 3) (1− 1.0426N−0.443)−1

RCR (Mode-Technique 1) (1− 0.5736N−0.265)−1

RCR (Mode-Technique 2) (1− 0.7285N−0.279)−1

RCR (Mode-Technique 3) (1− 0.8790N−0.264)−1

RCR (Mode-T1) + CR (1− 1.7079N−0.602)−1

RCR (Mode-T3) + CR (1− 2.8415N−0.630)−1

RCR (Mode-T1) + RCR (Median-T1) + CR (1− 1.7453N−0.605)−1

RCR (Mode-T3) + RCR (Median-T1) + CR (1− 2.9047N−0.633)−1

Bulk Rejection (Mode) + RCR (Mode-T1) + RCR (Median-T1) + CR (1− 2.3525N−0.627)−1

Bulk Rejection (Mode) + RCR (Mode-T3) + RCR (Median-T1) + CR (1− 3.3245N−0.650)−1

a For data of equal weight (§2.3, §3.2, §4, §5). Appropriate for one-sided contaminants and in-
between cases. Empirical approximations are for N > 100.

TABLE 5
Correction Factors for the “Random of σ− and σ+” Scenarioa

Technique Correction Factor

Mean-Standard Deviation (No Rejection) (1− 0.4176N−1.293)−1

CR (Mean-Standard Deviation) (1− 0.4482N−0.717)−1

RCR (Median-Technique 1) (1− 2.0285N−1.021)−1

RCR (Median-Technique 2) (1− 2.5569N−1.050)−1

RCR (Median-Technique 3) 1− 0.06629
(N/41.83)−2.8626+(N/41.83)0.9580

RCR (Mode-Technique 1)

{
1.02187− 0.00907 log10N if 100 < N ≤ 1000

1− 0.03946N−0.2895 if N > 1000

RCR (Mode-Technique 2)

{
1.07422− 0.02651 log10N if 100 < N ≤ 1000

1− 0.01616N−0.2895 if N > 1000
RCR (Mode-Technique 3) (1− 3.4414N−0.849)−1

RCR (Mode-T3) + CR (1− 3.2546N−0.840)−1

RCR (Mode-T3) + RCR (Median-T1) + CR (1− 2.8989N−0.824)−1

Bulk Rejection (Mode) + RCR (Mode-T3) + RCR (Median-T1) + CR (1− 3.1666N−0.833)−1

a For data of equal weight (§2.3, §3.3.1, §4, §5). Appropriate for (mildy) asymmetric uncontaminated distributions. Empirical
approximations are for N > 100.

For N > 100:
a(N) = −0.5408 log10N − 0.6482 (B18)

and
b(N) = 1.4154 + 0.3635(−1)N . (B19)

For this scenario and the “bulk rejection (mode) + RCR (mode-T3) + RCR (median-T1) + CR” technique, the
correction factor is given by Equation B15, where a(N ≤ 5) and b(N ≤ 5) are listed in Table 7. For 5 < N ≤ 20:

a(N) = −0.2683(log10N)4 + 1.9174(log10N)3 − 5.062(log10N)2 + 5.452 log10N − 2.9999 (B20)

and

b(N) = 43.179(log10N)6 − 331.85(log10N)5 + 968.25(log10N)4 − 1399.1(log10N)3 + 1070.7(log10N)2

− 415.81 log10N + 65.002 + 0.1365(−1)N (log10N)2.4716.
(B21)

For 20 < N ≤ 100, a(N) is given by Equation B20, and:

b(N) = 1.5144 log10N − 0.0448 + 0.1365(−1)N (log10N)2.4716. (B22)

For N > 100:
a(N) = −0.4282 log10N − 0.4412 (B23)

and
b(N) = 2.9881 + 0.7530(−1)N . (B24)
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TABLE 6
Empirical Approximation Parameter Values for f(N ≤ 8)

Scenario: Single σ Smaller of σ− and σ+ Random of σ− and σ+
N a1(N) b1(N) a1(N) b1(N) a1(N) b1(N)

4 0.2024 0.4642 · · · · · · · · · · · ·
5 -0.2916 0.2603 -0.0828 -0.3003 -0.4664 2.1342
6 -0.0332 0.3638 -0.2675 -0.2443 -0.3124 1.0197
7 -0.1818 0.4547 -0.5588 -0.4097 -0.7502 0.5797
8 Equation B2 Equation B3 -0.8893 -0.4884 Equation B25 Equation B26

TABLE 7
Empirical Approximation Parameter Values for CF (N ≤ 5)

Scenario: Single σ Smaller of σ− and σ+ Random of σ− and σ+
Technique: Bulk Rejection (Median) Bulk Rejection (Mode) Bulk Rejection (Mode) Bulk Rejection (Mode)

+ RCR (Median-T3) + RCR (Mode-T1) + RCR (Mode-T3) + RCR (Mode-T3)
+ RCR (Median-T1) + RCR (Median-T1) + RCR (Median-T1) + RCR (Median-T1)

+ CR + CR + CR + CR
N a(N) b(N) a(N) b(N) a(N) b(N) a(N) b(N)

2 -3.1528 0.2739 -0.3984 1.0815 -0.3984 1.0815 -2.5951 0.7336
3 -1.1913 0.4487 -1.1462 1.0699 -1.1094 1.5143 -0.8546 0.8160
4 -1.0509 3.3825 · · · · · · · · · · · · -0.9543 1.1605
5 -1.4145 0.1185 -1.1196 0.4597 -1.1446 0.3394 Equation B32 Equation B33

For the “random of σ− and σ+” scenario, appropriate for (mildly) asymmetric uncontaminated distributions (§3.3.1),
f(N ≤ 190) is given by Equation B1, f(190 < N ≤ 305) is given by Equation B7, and f(N > 305) is given by Equation
B8, where a1(N ≤ 7) and b1(N ≤ 7) are listed in Table 6. For 7 < N ≤ 1000:

a1(N) = 3.1767(log10N)6 − 34.561(log10N)5 + 152.16(log10N)4 − 347.96(log10N)3 + 435.59(log10N)2

− 282.57 log10N + 73.696,
(B25)

b1(N) = 5.8718(log10N)4 − 47.049(log10N)3 + 131.12(log10N)2 − 150.24 log10N + 61.727, (B26)

a2(N) = −1.8953(log10N)2 + 11.745 log10N − 19.36, (B27)

and
b2(N) = −2.7584(log10N)2 + 17.078 log10N − 24.602. (B28)

For N > 1000:
a2(N) = −1.1827 (B29)

and
b2(N) = 1.8064. (B30)

This approximation should also be used with caution beyond N ∼ 106.
For this scenario and the “bulk rejection (mode) + RCR (mode-T3) + RCR (median-T1) + CR” technique, the

correction factor is given by:

CF (N) = CF1(N)1010
a(N)+b(N) log10( σwµw )

, (B31)

where a(N ≤ 4) and b(N ≤ 4) are listed in Table 7. For 4 < N ≤ 19:

a(N) = −1.3993(log10N)3 + 6.5746(log10N)2 − 9.8844 log10N + 2.8572 (B32)

and
b(N) = 4.0458(log10N)2 − 6.4354 log10N + 2.7667. (B33)

For 19 < N ≤ 100, a(N) is given by Equation B32, and:

b(N) = 1.7394 log10N − 1.0435. (B34)

For N > 100:
a(N) = −0.5989 log10N − 0.6097 (B35)

and
b(N) = 1.4123 log10N − 0.3893. (B36)
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