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Abstract

Fitting a statistical model to data is one of the most important tools in any scientific

or data-driven field, and rigorously fitting a two dimensional statistical model to data

that has intrinsic uncertainties (error bars) in both the independent variable and the

dependent variable is a daunting task, especially if the data also has extrinsic uncertainty

(sample variance) that cannot be fully accounted for by the error bars. Here, I introduce

a novel statistic (described as the Trotter, Reichart, Konz statistic, or TRK) developed

in Trotter (2011) that is advantageous towards model-fitting in this “worst-case data”

scenario, especially when compared to other methods. I implemented this statistic as a

suite of fitting algorithms in C++ that comes equipped with many capabilities, including:

support for any nonlinear model; probability distribution generation, correlation removal

and custom priors for model parameters; asymmetric uncertainties in the data and/or

model, and more. I also built an end-to-end website through which the algorithm can

be used easily, but generally, with a high degree of customizability. The statistic is

applicable to practically any data-driven field, and I show a few examples of its usage

within the realm of astronomy. This thesis along with Trotter (2011) form the foundations

for Trotter, Daniel E. Reichart, and Konz (2020), in preparation. The TRK source

code and web-based calculator can be found at https://github.com/nickk124/TRK and

https://skynet.unc.edu/rcr/calculator/trk, respectively.
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1. Introduction

Robustly fitting a statistical model to data is a task ubiquitous to practically all data-

driven fields, but the more nonlinear, uncertain and/or scattered the dataset is, the

more difficult this task becomes. In the common case of two dimensional models (i.e.

one independent variable x and one dependent variable y(x)), datasets with intrinsic

uncertainties, or error bars, along both x and y prove difficult to fit to in general, and if

the dataset has some extrinsic uncertainty/scatter (i.e., sample variance) that cannot be

accounted for solely by the error bars, the difficulty increases still.

In this work, I describe a new, easily generalizable statistic developed by Trotter (2011),

the Trotter-Reichart-Konz statistic—hereafter the TRK statistic—that is used to fit

models to data in such “worst case” scenarios. Such model distributions are defined by

convolving a model curve yc(x;ϑm) that describes the shape of the model with a 2D

probability distribution that characterizes the scatter of the data, where ϑm is the set of

parameters describing the model. In order to fit such a model to a set of data, values

for ϑm and the parameters that describe the extrinsic scatter of the dataset must be

determined that maximize the joint probability, or likelihood, of the model curve and

the dataset; in other words, a model distribution must be found that is most likely to

reproduce the dataset. Assuming that the intrinsic and extrinsic uncertainties are Gaussian

(possibly asymmetric), I show how to define such a likelihood function following Trotter

(2011). This likelihood includes integrating over a rotated coordinate system of choice,

and when a specific set of coordinates is used, it results in a statistic that is invertible (i.e.

fitting x vs. y will result in the same fit as y vs x), computationally feasible, and reduces

to a χ2 statistic in the classic 1D uncertainty case; we define this as the TRK statistic.

Models predicted by maximizing the TRK statistic’s likelihood function are geometrically

equivalent to models that minimize the sum of the squares of the radial distances of each
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1. Introduction

datapoint centroid from the model curve, which I demonstrate. The TRK statistic is not

scalable, i.e. it yields different best fits depending on the choice of basis, or scale for each

coordinate axis, with some optimum scale corresponding to the true best fit. However,

I present an implementation of an algorithm originally conceptualized in Trotter (2011)

that can determine such an optimum scale, effectively removing this caveat of the TRK

statistic.

The original introduction of the TRK statistic in Trotter (2011) used a genetic algorithm-

based implementation of the statistic that was non-automated, non-“production style”

code that only demonstrated the proof-of-concept of the statistic, rather than introduced

an easy-to-use, widely applicable codebase. Because of this, my contribution to TRK

was to implement the statistic from scratch into a fully-fledged, general nonlinear fitting

suite that can be picked up and used easily by anyone, while supporting a number of

features. This codebase is the focus of this work, and can be found, with documentation,

at https://skynet.unc.edu/rcr/calculator/downloads.

In §2 and §3 I introduce the TRK statistic and its central properties, closely following

Trotter (2011). Following this, in §4 I introduce the core algorithms used to perform fits

and other procedures with the TRK statistic in practice, including, but not limited to, fit

scale optimization, determining best fits, and model parameter distribution generation.

Then, in §5 I introduce additional algorithms of the TRK suite, including methods for

the removal of correlation between model parameters, and the addition of asymmetric

extrinsic and/or intrinsic uncertainties.

In §6 I begin by comparing the TRK suite to similar algorithms (§6.1), and then present

TRK fits used to model relationships between empirical parameters that describe the

extinction of light by dust in the Milky Way as examples of the usage of the suite

(§6.2). Next, I present a robust but easy-to-use implementation of the algorithm into a

webpage-based calculator that I developed end-to-end (§6.3), which can be used for quick,

reliable fitting while also possessing a number of features. Finally, in §7 I discuss potential

expansions of the suite that may be explored in later works.

2
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2. The TRK Statistic

2.1. Statistical Preliminaries: Bayesian Statistics

I begin by considering some set of observed data D and a set of parameters H that

describes some hypothetical model for this data. From here, I define p(H) to be the prior

probability distribution function, or prior for short; this defines how any prior information

known about the model parameters (before data collection) affects and/or constrains

the value of such parameters. For example, if some parameter has a best fit value and

uncertainty from a previous result, this can form the basis of a prior for that parameter.

Next, we define the likelihood probability distribution function L(D|H), or likelihood for

short, as the conditional probability of obtaining the observed data D given some model

described by H; this is the term that describes how likely the model is to have generated

the data. Finally, in order to examine how some model described by H can arise from the

data, we define the posterior probability distribution function p(H|D), or posterior for

short, to be the probability of obtaining certain model parameters H given the data D.

These quantities can all be related with Bayes’ Theorem

p(H|D) =
L(D|H)p(H)

p(D)
, (2.1)

of which the proof is outside the scope of this work, but is found in any introductory

probability course. In Equation (2.1) the normalization factor p(D), known as the evidence,

is typically difficult to compute. However, really only being a normalization factor, it can

safely be ignored for our fitting purposes (as will be shown in §4.2 and §4.4.1), such that

3



2. The TRK Statistic

in this work, Bayes’ Theorem will be used in the form of

p(H|D) ∝ L(D|H)p(H). (2.2)

From here, its clear that given some prior(s) p(H), if a likelihood function L(D|H) can be

defined, then the posterior can be determined, which ultimately describes the distribution

of the model parameters that arise from the dataset. The central goal of the remainder of

this chapter will be to clearly define this likelihood.

2.2. Fitting a Model to Data in Two Dimensions

Consider a set of N two-dimensional datapoints {xn, yn}, where n = 1, 2, . . . N . In the

most general case, each datapoint has an intrinsic probability distribution defined by its

intrinsic scatter/statistical uncertainty, or error bars for short, {σx,n, σy,n} along one or

both dimensions of x and y1. The dataset can also have extrinsic scatter/sample variance,

or slop for short, again in both dimensions, that cannot solely be accounted for by the

error bars (see Fig. 2.1 for an example). In this case, the slop must be parameterized and

fit to as part of the model. Hereafter, unless otherwise stated, I assume that the slop

is normally distributed along the two dimensions and described by the two parameters

σx and σy, that are constant along the entire dataset. I also assume that the intrinsic

scatter in both dimensions, and the extrinsic scatter in both dimensions, are respectively

uncorrelated.

In the following section, we will begin to explore how a likelihood function describing a

model for this “worst case” type of dataset can be defined, by connecting the extrinsic

and intrinsic probability distributions of the dataset with the model itself.

1The data can also be given weights {wn}, i.e. assigning some datapoint a weight of 2 is equivalent to
including that datapoint twice in the dataset.

4



2. The TRK Statistic

Figure 2.1.: Example dataset and underlying model distribution where the scatter of the data cannot
solely be accounted for by the error bars, which must be parameterized as extrinsic scatter,
or slop. Model distribution is shown with 1−, 2− and 3σ confidence regions for the slop of
the model, to properly account for the uncertainty in the dataset.

5



2. The TRK Statistic

2.2.1. The Likelihood Function

The derivation below closely follows Trotter (2011), where the TRK statistic was initially

formulated. In order to consider fitting a model to data, we must first determine how to

quantify the goodness of fit for such a model, given some distribution of N measurements

described in the previous section. I define part of the model as some probability distribution

g(x, y) that is convolved along some model curve function yc(x;ϑm), where ϑm is the set

of parameters that define the functional form of the model. Then, in order to properly

represent the scatter of the data, I define the full model distribution by convolving this

with a 2D Gaussian distribution that characterizes the slop, with widths defined by the

parameters σx and σy. This representation of the model can be difficult to conceptualize,

but it is necessary in order to work with the most general, Bayesian treatment of a

two-dimensional uncertain dataset. A visualization of this is shown in Figures 2.2 and

2.3.

Another way to express the (effectively 1D) model curve yc(x;ϑm) is do describe it as

a one-dimensional delta function along some arbitrary chosen (orthogonal) coordinate

system (un, vn). Indicated by the subscripts of n, such coordinates can, in the most general

case, vary between datapoints. As such, we can express the probability density along the

model curve as g(x, y)δ(vn, vc,n(un;ϑm)), where vc,n(un;ϑm) is yc(x;ϑm) in the (un, vn)

coordinate system, and δ denotes the one-dimensional Dirac delta function. Also note that

given that the coordinates (un, vn) are assumed to be orthogonal, we can always express

them as a rotation from (x, y).

Now that we have an expression for the probability density along the model curve, we

can convolve this with the extrinsic scatter/slop distribution (again, assumed to be 2D

Gaussian) to obtain the model distribution function for a single datapoint,

pmod
n (x′, y′|ϑm, σx, σy) =

∫
un

∫
vn

g(x, y)δ(vn, vc,n(un;ϑm))N (x′|x, σx)N (y′|y, σy) dvn dun,

(2.3)

given the definition of the convolution of two bivariate functions, where the integrals are

6



2. The TRK Statistic

y(x;ϑ )
c m

x

y

Figure 2.2.: Visualization of some two-dimensional dataset (from Trotter (2011)) with both intrinsic and
extrinsic scatter in two dimensions, and accompanying model distribution with 1−, 2− and
3σ confidence regions for the extrinsic scatter/slop of the model represented by the shaded
regions. Inset box is shown zoomed in Fig. 2.3.
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2. The TRK Statistic

x

y

y(x(( ;ϑ )
c
yy((

m
;ϑ ;ϑ 

σx,nσ

σy,nσσ

(x  , y y(( )))
n      n

, y, y
σσyσσ

σxσ

Figure 2.3.: Fig. 2.2, zoomed in, from Trotter (2011). Centered is a single data-point (xn, yn) with intrinsic
probability distribution defined by its’ error bars/intrinsic scatter σx,n, σy,n, alongside a model
distribution with curve yc(x;ϑm) and extrinsic scatter/slop parameters (σx, σy). The shaded
regions represent the 1−, 2− and 3σ confidence regions of the datapoint’s intrinsic probability
distribution, and of the extrinsic scatter-convolved model distribution.
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2. The TRK Statistic

both over (−∞,∞) and N denotes the Gaussian/normal distribution

N (x′|µ, σ) =
1√

2πσ2
exp

(
−1

2

(x′ − µ)2

σ2

)
. (2.4)

with mean µ and standard deviation σ.

Next, we need to obtain an expression for the full joint probability of a single datapoint

with the model distribution function pmod
n for that datapoint. The intrinsic probability

for a single datapoint comes from the error bars for that datapoint, and is found with

pintn (x′, y′|xn, yn, σx,n, σy,n) = N (x′|xn, σx,n)N (y′|yn, σy,n). (2.5)

again assuming Gaussian error bars. From here, we can find the joint probability of

some nth datapoint with the model distribution by integrating the product of the two

distributions pmod
n and pintn over x′ and y′, as

pn(ϑm, σx, σy|xn, yn, σx,n, σy,n) =

∫
x′

∫
y′

∫
un

∫
vn

g(x, y)δ(vn − vc,n(un;ϑm))×

N (x′|x, σx)N (y′|y, σy)N (x′|xn, σx,n)N (y′|yn, σy,n) dvn dun dy′ dx′ . (2.6)

Next, the likelihood function is defined to be the product of all N of the joint probabilities

of the datapoints, as

L =
N∏
n=1

pn(ϑm, σx, σy|xn, yn, σx,n, σy,n), (2.7)

so in theory, our work of finding an expression for the likelihood is done. However, given

the four integrals in Equation (2.6), this solution is quite computationally intractable. In

order to obtain a practical likelihood, a few simplifying, but reasonable approximations

need to be made, following Trotter (2011).

9



2. The TRK Statistic

2.2.2. An Analytical Approximation of the Likelihood

To begin, we can simplify the expression for the joint probability pn by noting that the

(x′, y′) integral in Equation (2.6) can be evaluated analytically, which gives

pn(ϑm, σx, σy|xn, yn, σx,n, σy,n) =∫
un

∫
vn

g(x, y)δ(vn − vc,n(un;ϑm))N (x|xn,Σx,n)N (y|yn,Σy,n) dvn dun , (2.8)

where (Σx,n,Σy,n) are the quadrature sums of both the intrinsic and extrinsic scatters:

Σx,n ≡
(
σ2
x,n + σ2

x

)1/2
Σy,n ≡

(
σ2
y,n + σ2

y

)1/2
. (2.9)

What is the significance of these terms? In the words of Trotter (2011), Equation (2.8)

indicates that the joint probability of some nth datapoint with the model distribution is

proportional to the integral of the effectively one-dimensional probability density along

the model curve through a two dimensional convolved Gaussian, whose widths are the

quadrature sums of the intrinsic and extrinsic uncertainties in each direction, Σx,n and

Σy,n. In other words, Fig. 2.3 is equivalent to 2.4.

To further simplify Equation (2.8) (i.e., remove the integrals), I’ll begin by making the

first approximation: that the intrinsic probability density along the model curve g(x, y)

varies slowly with respect to the scale of the size of the convolved error ellipse described by

Σx,n and Σy,n. This will make g(x, y) approximately constant, such that it can be pulled

out of the integral in Equation (2.8). Next, I will assume that the model curve yc(x;ϑm)

is approximately linear over this same scale; specifically, I will approximate yc as a line

yt,n(x) passing through the point (xt,n, yt,n) where yc is tangent to the convolved error

ellipse, with some slope mt,n (see Fig. 2.4), i.e.

yc(x) ≈ yt,n +mt,n(x− xt,n). (2.10)

If, at some position x, the model curve yc(x;ϑm) is tangent to the error ellipse at some

10



2. The TRK Statistic

Σ





x,n

Σ





y,n

(x  , y )
n      n

(x   , y  )




t,n     t,n
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y  +m  ( x-x  )
t,n t,n t,n

y (x;J )
c   m

Figure 2.4.: Visualization of some datapoint (xn, yn) with convolved error ellipse defined by the extrinsic-
intrinsic convolved error bars (Σx,n,Σy,n), alongside some model curve yc(x). Also shown
is the approximation of the non-linear model as a line tangent to the error ellipse at point
(xt,n, yt,n).
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2. The TRK Statistic

(xt,n, yt,n), then we have the relation

(yc(x;ϑm)− yn)2

Σ2
y,n

+
(x− xn)2

Σ2
x,n

=
(yt,n − yn)2

Σ2
y,n

+
(xt,n − xn)2

Σ2
x,n

, (2.11)

which is the condition for (x, yc(x;ϑm)) to be a tangent point. Differentiating this equation

with respect to x gives

d

dx

(
(yc(x;ϑm)− yn)2

Σ2
y,n

+
(x− xn)2

Σ2
x,n

)
= 0 , (2.12)

which implies that the tangent point is equivalent to the point on yc that minimizes the

radial distance to the centroid of the error ellipse. Evaluating the derivative gives us an

equation that can be implicitly solved for x = xt,n,

(yc(x)− yn)
dyc(x;ϑm)

dx
Σ2
x,n + (x− xn)Σ2

y,n = 0 , (2.13)

given some model curve and datapoint.

Finally, given these two assumptions, the joint probability of the nth datapoint and the

model distribution of Equation (2.8) can be simplified by integrating over vn, as

pn(ϑm, σx, σy|xn, yn, σx,n, σy,n) ≈ g(xn, yn)

∫ ∞
−∞
N (x|xn,Σx,n)N (yc(x;ϑm)|yn,Σy,n) dun ,

(2.14)

given the “selecting” property of the delta function on the Gaussian along y. By using

the chain rule substitution dun = dun
dx

dx, yc(x;ϑm) ≈ yt,n +mt,n(x− xt,n) from Equation

(2.10), and integrating over x, we have finally arrived at an analytic expression for pn:2

pn(ϑm, σx, σy|xn, yn, σx,n, σy,n) (2.15)

≈ g(xn, yn)
dun
dx
N
(
yn | yt,n +mt,n(xn − xt,n),

√
m2
t,nΣ2

x,n + Σ2
y,n

)
.

The likelihood function is the joint probability of the model distribution with all of the

2Here, we have also implicitly made an additional approximation: that the efficiency of which the
measured data samples the true model distribution is approximately constant along the scale(s) of
(σx,n, σy,n) and (σx, σy). This is unnecessary to delve into for the purposes of this work, but for an explicit
inclusion of this, see §2.2.1 of Trotter (2011).
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2. The TRK Statistic

datapoints, and the best fit model parameters are defined as the parameters that, when

plugged into the likelihood, maximize it. In other words, the likelihood is the product of

all N of the individual datapoints’ joint probability distributions. In practice, rather than

choosing to maximize L to determine the best fit, it is much more common to minimize

−2 lnL (or some proportion thereof) in order to determine the best fit model parameters,

for reasons of computational flexibility. In the simplifying “traditional” case of no error

bars in x and no slop whatsoever, −2 lnL is equivalent to the χ2 “goodness-of-fit” statistic,

χ2 =
N∑
n=1

[(y − yc(x;ϑm))/σy,n]2. As such, in our general case, −2 lnL is analogous to χ2,

and has the form of

−2 lnL = −2
N∑
n=1

ln pn(ϑm, σx, σy|xn, yn, σx,n, σy,n)

=
N∑
n=1

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

− 2
N∑
n=1

ln

dun
dx

1√
m2
t,nΣ2

x,n + Σ2
y,n

+ C ,

(2.16)

following Equations (2.7) and (2.15), where C is a constant3.

Recall that the rotated coordinate system (un, vn) in which the 1D model curve δ(vn, vc,n(un;ϑm))

is defined can be chosen at will, including the usage of different coordinates for different

datapoints. As will be described in §6.1, different choices of these coordinates/of dun
dx

will

give different statistics, with noticeably different properties. The following section will

show how a certain choice of these coordinates will lead to the TRK statistic.

2.2.3. The TRK Likelihood

As shown in Equation (2.16), The arbitrary choice of the rotated coordinates (un, vn) and

therefore the factor dun
dx

will be what defines a given statistic. While various choices for

dun
dx

that lead to different statistics with different properties will be explored in §6.1, for

now I will only examine the choice that leads to the TRK statistic, which is advantageous

over other such statistics for reasons that will be addressed in §6.1.

3The explicit form of the constant C is given in Trotter (2011), which isn’t necessary for the purposes
of this paper, as constant offsets are arbitrary for the process of likelihood maximization.
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2. The TRK Statistic

The TRK statistic is defined such that for some nth datapoint, un is chosen to be

perpendicular to the line segment connecting the centroid of the datapoint (xn, yn) with

the tangent point (xt,n, yt,n) discussed in the previous section. This choice results in a

likelihood of the form

LTRK ∝
N∏
n=1

√
m2
t,nΣ2

x,n + Σ2
y,n

m2
t,nΣ4

x,n + Σ4
y,n

exp

{
−1

2

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

}

−2 lnLTRK =
N∑
n=1

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

−
N∑
n=1

ln

(
m2
t,nΣ2

x,n + Σ2
y,n

m2
t,nΣ4

x,n + Σ4
y,n

)
+ C ,

(2.17)

which is the central equation of this work. One important property of the TRK statistic is

that it is essentially a one-dimensional χ2-like statistic that is measured in the direction of

the tangent point4. For a visualization of the geometry of the TRK statistic, see Figure 2.5.

Hereafter, I will sometimes use the shorthand χ2
TRK ≡ −2 lnLTRK, especially in Chapter

4 where it is frequently used.

4The derivation of this is beyond the scope of this work, but is found in Trotter (2011).
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x
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Σt,n

Σx,n

Σy,n

y x  
c

y

n

O

T

un

θt,n

Figure 2.5.: Illustration of the geometry of the TRK statistic modified from Trotter (2011), given some
datapoint and model. The datapoint is centered at (xn, yn) (point O), with convolved error
ellipse described by the widths (Σx,n,Σy,n) (Equation (2.9)). The model curve yc(x;ϑm) is
tangent to the convolved error ellipse at tangent point (xt,n, yt,n) (point T ), and the red line
is the linear approximation of the model curve, with slope mt,n = tan θt,n. The blue line
indicates the rotated coordinate axis un for the TRK statistic, perpendicular to the vn axis.
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3. Properties of the TRK Statistic

3.0.1. Invertibility

A useful property for any two-dimensional statistic is that it is invertible, i.e. that if fitting

a dataset’s y vs x data gives some model curve yc(x), fitting x vs. y gives the inverse

xc(y) = yc(x)−1. In the Bayesian formalism, a statistic is invertible if running these two

inverted fits yields the same likelihood function (Trotter (2011)). While mainly known to be

used as a measure of the linear correlation of a dataset, one metric of invertibility is actually

the ubiquitously-used Pearson Correlation Coefficient, R2, of Pearson (1896). To see this,

consider some linear model with slope myx that was obtained by fitting to some y vs. x

data. Similarly, fitting x vs. y for the same dataset gives some model line with slope mxy.

As shown in Trotter (2011), the correlation coefficient can then be found as R2 ≡ mxymyx;

therefore, if the statistic used to fit is invertible, and therefore mxy = 1/myx, we have

that R2 = 1. Proved by Trotter (2011), the TRK statistic is completely invertible.

Therefore, by definition R2 = 1 always for the TRK statistic, meaning that fitting results

can always be trusted under inversion.

3.0.2. Scalability

Another important property of any statistic, although not immediately obvious, is its

scalability. Here, a statistic is defined to be scalable if re-scaling the data along the x−
or y− axis does not change the best fit arrived at from maximizing the likelihood. If a

statistic is not scalable, then the best fit will depend on the choice of units of measurement,

which can easily create unwanted behavior when fitting (see e.g. Trotter (2011)), given

that there is usually never any a priori reason to choose some set of units over another.
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3. Properties of the TRK Statistic

To examine the scalability of the TRK statistic, we will begin by noting that the statistic

is invariant if both x− and y− axes are rescaled by the same factor, shown in Trotter

(2011). As such, any rescaling that potentially affects the TRK statistic can always be

defined as rescaling only the y−axis by some numerical factor s1. In order to see the effect

of data rescaling within the TRK statistic, I multiply all y−axis dependent terms by some

s within the TRK likelihood of Equation (2.17), which gives

LTRK
s ∝

N∏
n=1

√
m2
t,nΣ2

x,n + Σ2
y,n

m2
t,nΣ4

x,n + s2Σ4
y,n

exp

{
−1

2

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

}
6∝ LTRK for a fixed s . (3.1)

As such, the standalone TRK statisic is not scalable, so different choices of scale will

result in different best fit model parameters, including slop/extrinsic scatter (σx, σy). Not

only this, but it is impossible to determine anything about the relative fitness of best fits

solely given numerical values of the likelihood function; what this means in practice is

that the scaling factor s can not be fit to as a model parameter (Trotter (2011)). However,

we will show in the following section that there is a way to quantitatively compare TRK

fits done at different scales, so that this hurdle can be negated.

3.0.3. The TRK Correlation Coefficient

To begin, consider two TRK best fits gained from maximizing the likelihood (Equation

(3.1)) at different scales (i.e. different values for s), given some model and dataset. Because

the TRK statistic is completely invertible, the Pearson Correlation Coefficient R2 is 1 for

both fits. As such, in order to compare the two fits, a new correlation coefficient needs

to be defined that can quantify the variance of the statistic’s predictions between them.

By convention, the new coefficient should follow similar properties to R2, insofar that

it is restricted to the range of [0, 1], and that it equals 1 if the two best fit lines being

compared have the same slope (plotted in the same scale space).

I will begin with the case of linear fits, and continue on to generalize to arbitrary non-linear

1Equivalently we can define s ≡ sy/sx, where sy is the standalone rescaling of the y−axis, and sx is
the same for the x−axis.
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3. Properties of the TRK Statistic

models. Trotter (2011) introduced a new correlation coefficient R2
TRK that is a function of

the difference of the slopes of the models, rather than the ratio, as opposed to the Pearson

R2 (see §3.0.1). The scale-dependent TRK correlation coefficient is defined as

R2
TRK(a, b) ≡ tan2

(
π

4
− |θa − θb|

2

)
. (3.2)

given a linear fit at s = a with slope ma = tan θa, and another at s = b with slope

mb = tan θb
2. Clearly, if the two lines have the same slopes, R2

TRK = 1 as desired, and if

the two lines differ in slope angle by 90◦, i.e. they are orthogonal, R2
TRK = 0. Now that

the difference between TRK fits at different scales can be compared, how do we determine

the best scale at which to run a fit?

Consider how rescaling will affect the slop parameters σx and σy, i.e. how the total slop

is distributed between these two parameters. Trotter (2011) showed that in the limit of

slop-dominated data (i.e. arbitrarily small/zero error bars {σx,n, σy,n} as compared to

the extrinsic scatter/slop), s → 0, σx → 0; similarly, as s → ∞, σy → 0. This behavior

occurs because as the scale s of the dataset is changed, the distribution of the total slop

between σx and σy is correspondingly affected. This range of s ∈ [0,∞) is considered

to be the physically meaningful range of fits. In the case of a dataset with non-zero

error bars, this physically meaningful range becomes some subset interval [a, b] ⊂ [0,∞),

where the number a is described as the minimum scale, while b is the maximum scale,

as lim
s→a+

σx = 0 and lim
s→b−

σy = 0 (from Trotter, 2011)3. As any fits done outside of this

interval are inherently unphysical, there must be some optimum s0 ∈ [a, b] that is the best

scale at which to run a fit4.

In order to determine the optimum scale s0, the following iterative approach defined

within Trotter (2011) is used. To begin, the first approximation of s0, s
(1)
0 , is found to be

the scale at which

R2
TRK(a, s

(1)
0 ) = R2

TRK(s
(1)
0 , b) ≡ R2

TRK . (3.3)

2R2
TRK compares the angles (off of the x-axis) (θa, θb) of the lines rather than the slopes (ma,mb) for

numerical efficacy, given that the former are restricted to the range of
(
−π2 , π2

)
, while the latter can be

anywhere within (−∞,∞).
3Here, I’ve taken the signs of the limits to indicate the direction of one-sided approach.
4By “unphysical”, I mean that such scales require imaginary best fit slops, i.e. (σ2

x, σ
2
y) < 0 (Trotter,

2011).
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3. Properties of the TRK Statistic

From here, we shift from the s = 1 space to this s = s
(1)
0 space, where the angles of the

lines follow the transformation θ → arctan
(
s
(1)
0 tan θ

)
. The analysis of Equation (3.3) is

then repeated in this new space to determine the next approximation for the optimum

scale, s
(2)
0 , i.e. finding the s

(2)
0 such that, e.g. in the case of a linear model,

R2
TRK ≡ tan2

π
4
−

∣∣∣arctan
(
s
(1)
0 tan θa

)
− arctan

(
s
(1)
0 tan θ

s
(2)
0

)∣∣∣
2


= tan2

π
4
−

∣∣∣arctan
(
s
(1)
0 tan θ

s
(2)
0

)
− arctan

(
s
(1)
0 tan θb

)∣∣∣
2

 , (3.4)

where θ
s
(2)
0

is the position angle of the best-fit line at scale s
(2)
0 , as measured in s = 1 space.

From here, we set s
(2)
0 → s

(1)
0 , and repeat until convergence to the final value of s0. It is at

this optimum scale that we actually run fits, compute model parameter uncertainties (see

§4.4.1), etc. The details of how Equation (3.3) is solved in practice to determine s0 are

given in §4.3.

The TRK correlation coefficient as given in Equation (3.2) can only be used for linear

models. As such, Trotter (2011) presented a logical generalization to nonlinear models, as

the average of the differences of the slope angles at all N tangent points at two scales a

and b:

R2
TRK(a, b) ≡ 1

N

N∑
n=1

tan2

(
π

4
− |θt,n;a − θt,n;b|

2

)
. (3.5)

Here, θt,n;a = arctanmt,n;a and θt,n;b = arctanmt,n;b are the position angles of the best-fit

curves at the tangent point to the nth datapoint at scales a and b, respectively. This

expression for R2
TRK can then be used to determine s0 using the same method described

by the previous section and Equation (3.3); in this case then, Equation (3.4) becomes

R2
TRK ≡

1

N

N∑
n=1

tan2

π
4
−

∣∣∣arctan
(
s
(1)
0 tan θt,n;a

)
− arctan

(
s
(1)
0 tan θ

s
(2)
0

)∣∣∣
2


=

1

N

N∑
n=1

tan2

π
4
−

∣∣∣arctan
(
s
(1)
0 tan θ

s
(2)
0

)
− arctan

(
s
(1)
0 tan θt,n;b

)∣∣∣
2

 . (3.6)

With this, we have covered all of the foundations and properties of the TRK statistic that
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3. Properties of the TRK Statistic

are needed to describe how TRK fits are completed in practice. In the next chapter, I

will delve into the suite of algorithms that I created to perform fitting, scale optimization,

model parameter distribution generation, and other core fitting algorithms.
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4. The TRK Codebase: Core

Algorithms

The previous chapter introduced all of the formalism needed to use the TRK statistic

in principle, but how can TRK fits be done in practice? What are the implementational

details? What options and configurations are available when using the TRK statistic?

While the statistic itself was created by Trotter (2011), it was only implemented in the form

of a genetic algorithm-based scientific codebase for testing. In order to have a production-

quality codebase for the usage of TRK, I created a new suite of algorithms from scratch in

C++, that completely overhauls how TRK fits are computed, including many additions and

optimizations as compared to the previous codebase. With this new codebase, TRK can

be used in a fully customizable, yet easy-to-use manner, with a host of options. The code

and full documentation can be downloaded at https://github.com/nickk124/TRK.

The first part of this chapter will discuss the implementation of the central part of the

TRK statistic, the TRK likelihood function LTRK of Equation (2.17), that is maximized

to obtain best fits. Here, I will explore my the algorithms that I use to determine the

tangent points described by Equation (2.13), and maximize LTRK with respect to all

model parameters—including slop—to obtain best fits. Following this, I will delve into

the routine that is used to determine the optimum fitting scale s0, using the formalism

described in §3.0.3. From there, I will explore the Monte Carlo methods used to generate

the full probability distributions and uncertainties of model parameters.
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4. The TRK Codebase: Core Algorithms

4.1. Tangent Point Finding

As shown in §2.2.2 and §2.2.3, for a given model curve yc(x;ϑm) and datapoint (xn, yn),

the point where the convolved error ellipse of the datapoint described by the convolved

error parameters (Σx,n,Σy,n) of Equation (2.9) is tangent to the model curve, (xt,n, yt,n), is

a central part of the TRK likelihood LTRK (Equation (2.17)). Any time that the likelihood

must be computed for a new set of model and slop parameters, all N of these tangent

points must be re-computed, and efficiently.

Recall that in order to determine such a tangent point xt,n (and therefore yt,n =

yc(xt,n;ϑm)), Equation (2.13) must be solved implicitly for xt,n in the general case of some

nonlinear model. In more practical terms, this means that the root(s) along the x−axis

of the left hand side of Equation (2.13) are such tangent point(s). To determine these

tangent points, I use (a slightly modified version of) the Two-Point Newton-Raphson

algorithm created by Tiruneh, Ndlela, and Nkambule (2013) to find the roots of Equation

(2.13). This algorithm has a number of benefits over other root-finding methods such

as bisection and the traditional Newton-Raphson method, especially when dealing with

complicated nonlinear functions that otherwise give convergence and speed issues. My

pseudocode implementation of it is shown in Algorithm 1.

It is essential to note that for certain non-monotonic, nonlinear models, there can easily be

multiple tangent points for a given datapoint; see Figure 4.1 as an example. In this case, I

take the tangent point that maximizes the joint posterior probability1 as the tangent point

to be used when evaluating the likelihood. However, only using the rootfinder of Algorithm

1 once per datapoint is insufficient, as some initial guess for the algorithm will always

only return the same, single tangent point. In order to reliably determine all possible

tangent points for a given datapoint, to properly maximize the likelihood, I use a logical

routine described in Algorithm 2. The goal of this routine is to determine various initial

guesses to supply to the root-finder until all possible tangent point-finding options have

been exhausted. To begin this algorithm, the root finder is used with the default initial

guess to determine the first tangent point. From here, I use a quadratic approximation (of

Equation (2.13)) through this first tangent point to approximate up to two more tangent

1I.e. for some nth datapoint, the joint posterior probability is the nth term in the product of Equation
(2.17).
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Algorithm 1: Modified Two-Point Newton-Raphson algorithm for finding a
single tangent point.

1 Function TwoPointNR
Input :Model parameters ϑm, datapoint (xn, yn), its convolved errors

(Σx,n,Σy,n), and initial tangent point guess of xguess.
Output : xt,n

2 begin

3 Initialize guess of xk−1 = xguess and xk = xguess + Σx,n/
√

10)
4 while not converged do
5 Main Two-Pt NR loop:

6 yk−1 = [yc(xk−1;ϑm)− yn]
dyc(xk−1;ϑm)

dx
Σ2
x,n + (xk−1 − xn)Σ2

y,n

7 yk = [yc(xk;ϑm)− yn]
dyc(xk;ϑm)

dx
Σ2
x,n + (xk − xn)Σ2

y,n

8
dyk
dx

=

(
dyc(xk;ϑm)

dx

)2

+ [yc(xk;ϑm)− yn]
d2yc(xk;ϑm)

dx2
Σ2
x,n + Σ2

y,n

9 r = 1− yk
yk−1

(
yk − yk−1
xk − xk−1

/
dyk
dx

)
10 xk+1 =

(
1− 1

r

)
xk−1 +

xk
r

11 xk−1 = xk, xk = xk+1

12 end
13 return xt,n = xk
14 end
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Figure 4.1.: Example of a model curve yc(x;ϑm) (purple, top) and datapoint (xn, yn) with convolved
error ellipse (red, middle) described by (Σx,n,Σy,n) where there are multiple points where
yc is tangent to the ellipse. This translates to there being multiple solutions/roots to/of
Equation (2.13), which is plotted in orange at the bottom.

points, and use these two approximate points as initial guesses for the root finder, which

will determine the remaining roots2. In general, I have found that non-periodic functions

generally have no more than three tangent points for a given datapoint. Finally, I note

that in the current C++ implementation of the TRK suite, the option to parallelize the

determination of all N tangent points for a given evaluation of LTRK is provided3.

4.2. Likelihood Maximization

The best fit at some scale s is defined to be the model parameters ϑm and slop parameters

(σx, σy) that maximize the TRK likelihood LTRK of Equation (2.17)4; however, as described

in §2.2.2, in practice the TRK suite minimizes χ2
TRK ≡ −2 lnLTRK to determine best fits.

For less general statistics where slop is not included in the likelihood, −2 lnL is often

2I also implemented a few modifications to this to account for certain edge cases (see Algorithm 2).
3Parallelizing the tangent-point finder isn’t always advisable for simple, linear models, as the two-point

Newton-Raphson routine runs so fast with these models that the computational overhead for starting
and stopping each tangent point’s computational thread is greater than the power needed to actually find
the tangent point itself. As such, this feature is most useful for nonlinear models.

4The method used to determine the optimum fitting scale s0 will be covered in §4.3.
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Algorithm 2: Find all possible tangent points for a given model and datapoint.

1 Function FindAllTangentPoints
Input :Model parameters ϑm, datapoint (xn, yn), and its convolved errors

(Σx,n,Σy,n).
Output :Array of all tangent points {xit,n}.

2 begin
3 Initialize empty {xit,n}, and initialize xguess,0 = xn.

4 while not all tangent points xit,n found do
5 First tangent point is the one that Two-Point Newton Raphson finds:
6 Append xnewt,n =TwoPointNR(xguess = xguess,0) to {xit,n}
7 if New root found is same as one from previous iteration then
8 break
9 end

10 if TwoPointNR oscillating between two tangent points x1, x2 ∈ {xit,n})
then

11 xmid =TwoPointNR[xguess =Midpoint(x1, x2)] to {xit,n}
12 {xit,n} = {x1, x2, xmid}
13 break

14 end
15 Use quadratic approximation through xnewt,n to approximate two more

tangent points if possible (see Algorithm 3):
16 {xapproxt,n } =QuadraticApprox (xnewt,n )

17 if {xapproxt,n } has 2 additional, approximate tangent points xguess,1, xguess,2
then

18 Let (xguess,1, xguess,2) =these two new approximate tangent points
19 if xnewt,n ∈ {xguess,1, xguess,2} then
20 x1 =TwoPointNR(xguess = xguess,1)
21 x2 =TwoPointNR(xguess = xguess,2)
22 {xit,n} = {x1, x2, xnewt,n }
23 break

24 end
25 else
26 xguess,0 =Median(xnewt,n , xguess,1, xguess,2)

27 end

28 end
29 if {xapproxt,n } contains no new tangent points then
30 xmin = min{xn}, xmax = max{xn}

xleft =TwoPointNR(xguess = xmin)
31 xright =TwoPointNR(xguess = xmax)
32 Append xleft, xright to {xit,n}
33 break

34 end
35 else if Two tangent points x1, x2 found in total, but {xapproxt,n } contains

no new points then
36 {xit,n} = {x1, x2}
37 break

38 end

39 end
40 return {xit,n}
41 end 25
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Algorithm 3: Use a quadratic approximation about a found tangent point to
determine guesses for any additional unknown tangent points.

1 Function QuadraticApprox
Input :Model parameters ϑm, datapoint (xn, yn), its convolved errors

(Σx,n,Σy,n), and tangent point xt,n determined by Two-Point
Newton Raphson root-finder.

Output :Approximations of additional unknown tangent points {xapproxt,n }, if
any remain.

2 begin
3 Initialize empty array of possible approximate tangent points {xapproxt,n }
4 Approximate

yc(x) ≈ yc(xt,n) +
dyc(xt,n)

dx
(x− xt,n) +

1

2

d2yc(xt,n)

dx2
(x− xt,n)2

5 Use this approximation for yc with Equation (2.13) to get a cubic equation
for {xapproxt,n }.

6 if The discriminant of this cubic equation > 0 then
7 There exists two real and distinct additional approximate tangent

points:
8 Use a cubic equation solver to analytically determine the two

additional approximate tangent points, and append them to {xapproxt,n }.
9 end

10 else
11 There exists no additional real approximate tangent points; the initial

point xt,n found is the only one.

12 end
13 return {xapproxt,n }
14 end
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minimized using methods such as the Gauss-Newton algorithm, e.g. Maples et al. (2018).

The Gauss-Newton algorithm is usually quick to converge because it uses the partial

derivatives of the model function with respect to the model parameters. However, because

an explicit expression is required for each derivative, this method does not translate over

to the TRK statistic, as the dependence of the model curve yc on the slop parameters

(σx, σy) cannot be explicitly written down in the general case. Because χ2
TRK must be

minimized not only with respect to the model parameters, but also the slop parameters,

Gauss-Newton, or any other method that requires explicit parameter derivatives, is not

an option.

Instead, the TRK suite uses a modified version of the Downhill Simplex algorithm of Nelder

and Mead (1965) to minimize χ2
TRK, with explicit implementation given in Algorithm 4.

The basic mechanism of this algorithm is that given M model and slop parameters, a

simplex 5 with M+ 1 vertices is initialized and evolves within parameter space along the

surface of χ2
TRK, with its evolution depending on the values of χ2

TRK at its various vertices,

in order to find the minimum of χ2
TRK. This method is advantageous due to it’s general

reliability, and the fact that no matter the number of parameters in the model, the only

function that the user need supply to the algorithm is the model curve6, as opposed to an

M-parameter model requiring the user to supply M partial derivatives of the model, as

in the Gauss-Newton algorithm7. For my implementation of the Nelder-Mead algorithm, I

also made the following modifications:

1. Any user-supplied prior probability distributions that place hard upper and/or lower

bounds on model parameters will act as “walls” for the evolution of the simplex, i.e.

if the simplex enters a region of a forbidden value of a model parameter, χ2
TRK will

evaluate as numerical infinity.

2. Once the best fit model and slop parameters have been determined by the mini-

mization of χ2
TRK, small values of slop are “pegged” to zero if they are within a

given tolerance, for the usage of the scale optimization algorithm described in §4.3.

5A simplex is essentially a higher-dimensional generalization of a triangle.
6However, the user still needs to supply the first two x−derivatives of yc, for the tangent point-finding

routine of §4.1.
7We note that for complicated nonlinear and/or high dimensional models, the simplex method can be

fairly dependent on the user-supplied initial guess for the model and slop parameters, given that such
models are often fraught with local minima.
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Algorithm 4: Modified Nelder-Mead Downhill Simplex algorithm for determin-
ing best fits according to χ2

TRK ≡ LTRK. Note that if a simplex vertex v enters a
region of parameter space forbidden by any provided bounded parameter priors,
χ2
TRK(v) ∼ +∞.

1 Function DownhillSimplex
Input :Model yc, initial guess for model and slop parameters

{ϑm, (σx, σy)}guess of dimension M, dataset {xn, yn} with error bars
{σx,n, σy,n}, given some fit scale s

Output :Best fit parameters {ϑm, (σx, σy)}
2 begin
3 Initialize simplex ∆ with M+ 1 vertices vi, i ∈ {0, · · · ,M} about

v0 = {ϑm, (σx, σy)}guess, with values of χ2
TRK(vi) ≡ χ2

i at each vi
4 while StdDev{χ2

i } > tolerance do
5 Each iteration of this is one simplex step.
6 Reorder the the vertices vi of ∆ with respect to ascending ordering of

χ2
TRK(vi) ≡ χ2

i .

7 Compute centroid excluding “worst” vertex vM, c ≡ 1

M
M−1∑
i=0

vi.

8 Reflect : Compute reflection point of vM, vr ≡ c+ α(c− vM)
9 if χ2

0 ≤ χ2
r < χ2

M−1 then
10 vM → vr
11 continue

12 end
13 if χ2

r < χ2
0 then

14 Expand(∆) (see Algorithm 10 in §A)
15 continue

16 end
17 if χ2

r ≥ χ2
M−1 then

18 Contract(∆) (see Algorithm 10 in §A)
19 continue

20 end
21 Shrink(∆) (see Algorithm 10 in §A)

22 end
23 pegSlopToZero(∆)
24 makeSlopPositive(∆) (see bullet point 2 on pg. 27)
25 return Best fit {ϑm, (σx, σy)} ≡ vM
26 end
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Additionally, any negative best fit slop values (σx, σy) are made positive for the

final best fit, because although the simplex explores parameter space with respect

to (σx, σy), these terms are always squared when they appear in the likelihood

(Equation (2.17)), so a fitted negative value is equivalent to a positive.

4.3. Scale Optimization

As described in §3.0.2, the TRK statistic/likelihood is not scalable by default, i.e. multi-

plying a dataset along the y-axis by some numerical factor s will result in different best

fits for various values of s. As such, we are presented with the problem of determining

the global optimum scale s = s0 to perform fits for a given dataset and model. Such a

method was explored schematically in §3.0.3 on pg. 18 as presented by Trotter (2011),

and in the following section I will present the explicit implementational details of the scale

optimization algorithm.

Given some dataset and model, from Equation (3.3), we must begin by determining the

minimum and maximum fitting scales a and b as described in §3.0.3. Recall from this

section that a is the scale where as s→ a+, the slop in the x-direction, σx → 0. Similarly, b

is the scale where as s→ b− the y−slop σy → 0. An example of this behavior is presented

in Figure 4.2, where I plot best fit slop values σx, σy for various values of s, given a linear

model8.

In order to determine the scale extrema a and b for a given model and dataset, I

implemented a type of bracketing/bisection method that, by running fits at various scales

(using the Downhill Simplex routine of Algorithm 4) and observing best fit slop values,

finds the exact scales where the two slops go to zero. This method determines a first, and

then b; I present the method for determing a as Algorithm 5, and the similar method for

determining b is given as Algorithm 11 in §A. Note that I also make several modifications

for improved efficiency, such as using best fit values for σy obtained from determining a

to start the routine for determining b at a better initial guess. I also provide the option

8Specifically, for the c1 vs. c2 spectral dust extinction model and dataset described in §6.2.
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x-slop

y-slop

s = a

s = b

Figure 4.2.: Example of slop/extrinsic scatter (σx, σy) dependence on fitting scale s (for some linear
model). Note that as is predicted in §3.0.3, there exist minimum and maximum scales s = a
and s = b (respectively) such that lim

s→a+
σx = 0 and lim

s→b−
σy = 0.

to find the two scale extrema at the same time using parallel computing (in the current,

C++ implementation of the TRK suite).

Now that the method for determining the scale extrema a and b for a certain model and

dataset has been presented, the optimum scale s0 needs to be determined. From §3.0.3,

in order to determine successive approximations for s0 until convergence, Equation (3.6)

must be repeatedly solved for s
(2)
0 given the previous iteration’s solution s

(1)
0 . I begin this

process with s
(1)
0 = (a+ b)/2, and then successively solve Equation (3.6) numerically while

setting s
(1)
0 = s

(2)
0 after each iteration.

In practice, Equation (3.6) is solved by rewriting it as

R̃2
TRK(s

(2)
0 ; s

(1)
0 , a, b) ≡ 1

N

N∑
n=1

tan2

π
4
−

∣∣∣arctan
(
s
(1)
0 tan θt,n;a

)
− arctan

(
s
(1)
0 tan θ

s
(2)
0

)∣∣∣
2


− 1

N

N∑
n=1

tan2

π
4
−

∣∣∣arctan
(
s
(1)
0 tan θ

s
(2)
0

)
− arctan

(
s
(1)
0 tan θt,n;b

)∣∣∣
2


= 0 , (4.1)

and numerically solving the equation for s
(2)
0 given the previous s

(1)
0 = s

(2)
0 using a bisection
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Algorithm 5: Bracketing/Bisection-type method for determining minimum
fitting scale a for some model and dataset.

1 Function FindMinimumScale
Input :Model yc and dataset {xn, yn} with error bars {σx,n, σy,n}.
Output :Minimum fitting scale a.

2 begin
3 Determine brackets (l, r) for min scale a:
4 Initialize bisection brackets l = s = 0, r = s = 1 and strial = s = 1.
5 σx(strial)← DownhillSimplex (s = strial)
6 Initialize step modifier α = 0.5× strial.
7 if σx(strial) > 0 then
8 r = strial
9 ltrial = strial

10 σx(ltrial) =DownhillSimplex (s = ltrial)
11 while σx(ltrial) > 0 do
12 ltrial = ltrial − α
13 σx(ltrial) =DownhillSimplex (s = ltrial)
14 α = 0.5× α
15 r = ltrial
16 end
17 l = ltrial
18 end
19 else if σx(strial) = 0 then
20 l = strial
21 rtrial = strial
22 σx(ltrial) =DownhillSimplex (s = ltrial)
23 while σx(rtrial) = 0 do
24 rtrial = rtrial + α
25 σx(rtrial) =DownhillSimplex (s = rtrial)
26 l = rtrial
27 end
28 r = rtrial
29 end
30 Use bisection to determine a now that we have brackets (l, r):
31 atrial = (l + r)/2
32 σx(atrial) =DownhillSimplex (s = atrial)
33 while |l − r| ≥ tolerance1 AND σx(atrial) ≥ tolerance2 do
34 atrial = (l + r)/2
35 σx(atrial) =DownhillSimplex (s = atrial)
36 if σx(atrial) > 0 then
37 r = atrial
38 end
39 else if σx(atrial) = 0 then
40 l = atrial
41 end

42 end
43 return a = atrial
44 end
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root-finding routine, repeating as necessary until convergence9. I then set the final optimum

scale s0 to be the last iteration of s
(2)
0 . This algorithm is presented in it’s entirety as

Algorithm 12 in §A, on pg. 79.

4.4. Model Parameter Distribution and Uncertainty

Computation

4.4.1. Using Adaptive MCMC to Sample Parameter Distributions

As a review, so far I have covered everything that is needed to determine best fit model and

slop parameters for any given nonlinear model and dataset with intrinsic and extrinsic two-

dimensional uncertainties. In practice, I run the scale optimization routine (Algorithms

5, 11, and 12 sequentially) to determine the optimum fitting scale s0, and then find

the best fit model and slop parameters {ϑm, (σx, σy)} using the Nelder-Mead downhill

simplex to maximize the TRK likelihood function LTRK (Algorithm 4). In reality, the

uncertainties of the best fit model parameters (and possibly the slop parameters) are also

often desired as a result of a fit, if not their complete posterior probability distributions 10.

Furthermore, if any prior information is known about the model parameters in the form of

prior probability distribution(s), it can be essential to introduce them to the computation

of the posteriors, following Bayes’ Theorem (Equation (2.2)).

There are a number of methods that can be used to sample a parameter’s (posterior

probability) distribution, but the types of methods that offer some of the most flexibility,

speed, and support for priors are Markov Chain Monte Carlo, or MCMC methods. MCMC

methods are a class of algorithms used to sample probability distributions, and they

fall under the broad umbrella of Monte Carlo Methods which are, generally speaking,

the usage of the ability of computers to rapidly generate random numbers to simulate

9Here I use bisection instead of other root-finding algorithms (e.g. Newton-Raphson) because most of
these other algorithms require derivatives of the function with respect to the independent variable. As

the derivative of Equation (4.1) with respect to s
(2)
0 , for example, is ill-defined, the usage of bisection is a

necessity. Furthermore, because this dependence of slop on scale has shown to be monatonic in all models
that I have explored, bisection is perfectly suited for the task.

10The latter often when the distribution(s) of the parameter are not simply Gaussian.
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useful numerical results, that are often otherwise computationally intractable with more

straight-forward methods. A simple example of a Monte Carlo method is the continuous

sampling of a proposal Gaussian distribution; as the number of samples becomes larger,

the generated distribution will converge to the proposal distribution. A Markov Chain can

generally be described as a process that continually changes from state to state following

certain transition probability rules that are dependent on the previous state. Together,

the moniker Markov Chain Monte Carlo describes how a Markovian random walk is taken

through parameter space to sample and generate the distribution of the parameters over

time, according to chosen rules for the evolution and sampling. In turn, this sampling

of the distribution can be used to estimate uncertainty, central tendency (e.g. mean,

mode etc.), and other useful quantities. For the TRK algorithm suite, the specific MCMC

method that we use is the adaptive version of the classic Metropolis-Hastings sampling

algorithm of Hastings (1970), which will be described as follows11.

To begin, recall from §2.1 that the posterior probability distribution of a model is the

probability distribution of obtaining some values Θ ≡ {ϑm, (σx, σy)} for the model (and

slop) parameters given a dataset D ≡ {xn, yn, σx,n, σy,n}. As such, in order to quantify any

uncertainty of the predictions laid out by the best fit model parameters, the posteriors

need to be examined. From Bayes’ Theorem (Equation (2.2)), then, sampling the posterior

is equivalent to (besides a factor of proportionality12) sampling the likelihood function

multiplied by any priors13, i.e.

P (Θ|D) ∝ LTRK(D|Θ)p(Θ) . (4.2)

Generally, the Metropolis-Hastings method works by iteratively generating a sequence of

samples of parameters, that as the number of samples R→ +∞, converges to the true

probability distribution of the parameters. Given some sample Θi, the possible distribution

11I chose Metropolis-Hastings sampling over other methods, e.g. Hamiltonian Monte Carlo, due to
it’s speed and because I have seen most model parameter distributions to be well behaved enough for
Metropolis-Hastings to be sufficient for the purposes of this algorithm.

12Again, this constant factor is of no consequence because in most cases, we often don’t care about
the absolute probability of a some range of values for parameters, but rather the relative probability as
compared to another range of possible values. Even if we did, we could integrate over the posterior to
compute the constant of proportionality, as it is just a normalization constant found by the condition
that

∫
p(Θ|D) dΘ = 1.

13Note that if no priors are given for some or all of the parameters, the prior distribution(s) are
uninformative, or flat, i.e. p(Θ) = 1, such that the posterior is then directly proportional to the likelihood.
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of the next potential sample Θt, or the proposal distribution Q(Θt|Θi), is dependent on

the value of Θi (which is why the sequence of samples is a Markov Chain). I note that

by default, Q is implemented as a Gaussian distribution, which could easily be changed

if needed. The acceptance of this next potential sample is dependent on the proposal

distribution: if it is accepted, it becomes the next step in the Markov Chain; if not,

the sample is discarded and another potential sample is generated. The probability of

acceptance for a potential parameter sample Θt is based off of the ratio between the

posterior evaluated at the potential sample, and that at the previous sample Θi; specifically,

Θt is accepted if α ≥ u, where α ≡ L
TRK(Θt)p(Θt)

LTRK(Θi)p(Θi)
and u ∼ U(0, 1) (U indicates the

uniform distribution)14.

The proposal distribution Q(Θt|Θi) is proportional to the target true posterior distribution

P (Θ) (in our case we assume a Gaussian distribution for this, which can easily be

changed), while the location (i.e. mean) of Q(Θt|Θi) is what changes from sample to

sample (specifically, Q(Θt|Θi) is centered on the most recent sample on the chain Θi).

The size, or in other words the covariance matrix Σ and therefore standard deviations of

Q(Θt|Θi)—the latter of which can be considered to be analogous to the step size(s) of

the Markov Chain for each parameter, as will be shown shortly—on the other hand must

be chosen prior to sampling, and will very much affect the quality and efficiency of the

overall sampling.

To see this behavior, consider some parameter m that is Gaussian-distributed, that we

wish to sample with the Metropolis-Hasting method. We need to choose the standard

deviation/width σm of the MCMC proposal distribution Q(m) for the sampler, which we

will refer to as the “step size” of the Markov Chain. We will use a fairly large sample

count of R = 100, 00015, and run the sampler given three noticeably different values of σm.

The results of these three separate samplings are shown in Figure 4.3; clearly, choosing

14I note that in regions of parameter space that evaluate to extremely high likelihood, this ratio of

posteriors
P (Θt)

P (Θi)
=
LTRK(Θt)p(Θt)

LTRK(Θi)p(Θi)
can evaluate with computational underflow or overflow errors. As

such, in practice the TRK suite samples in log space, i.e. some trial Θt is accepted given a previous Θi

if lnα = lnLTRK(Θt) − lnLTRK(Θi) + ln p(Θt) − ln p(Θi) ≥ lnu, where again u ∼ U(0, 1); this helps
combat such numerical errors (https://stats.stackexchange.com/users/63677/forgottenscience) (2020).
(Observing Equation (2.17), these errors can occur due to having a large dataset, small error bars and/or
slop, high or low datapoint weights—see footnote 3 on page 59—and/or other reasons.

15Minus the “burn-in” of 10, 000 initial samples that are discarded, to allow for the Markov Chain to
enter the majority of the distribution and not over-sample the outside.
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Figure 4.3.: Histograms of MCMC Metropolis-Hastings samplings for a normal-distributed parameter
m, with true Gaussian posterior plotted in red, given (Gaussian) proposal distribution
widths/“step sizes” of σm = 10, σm = 0.1, and σm = 0.0001, from left to right, given a sample
size of R = 100, 000. Note that even with such a high sample size, the choice of the step size
for the model parameter’s Markov Chain will drastically change the quality of the sampling.

the right values for the step sizes/proposal covariance matrix of an MCMC sampler is

essential; “step size” values that are too large or too small can lead to terrible samplings16.

However, it is very difficult to judge the quality of a choice of proposal distribution

step sizes without running the full sampling itself. Because the TRK likelihood LTRK

requires running the tangent point-finding logic for all N data-points at every evaluation

of LTRK, and I have found that it usually takes R ∼ 100, 000 to get a decent sampling

of the posterior, N × 100, 000 calls to the tangent-point finding routine are required in

order to sample the posterior distribution of the model and slop parameters of a given

model and dataset. Even with parallelization and other optimizations, this requires a

fair amount of computational work, especially if there are many datapoints and/or a

complicated multi-dimensional model. As such, simply using trial-and-error to determine

the best proposal distribution covariance matrix by iteratively running full samplings is

computationally impractical, especially if there are many model parameters, and therefore

many step sizes that need tuning.

Because of this problem, I wished to efficiently automate the choosing of the proposal

distribution covariance matrix, both to need as little user intervention and to require

the lowest overall computation time as possible. To do so, I used the Adaptive MCMC

16The technical reasons for the erroneous nature of such samplings are beyond the scope of this work,
but it is related to the ratio of the number of potential samples accepted by the Metropolis-Hastings
criterion to the number of total samples attempted. Too high a step size leads to too many samples being
accepted, while too low a step size leads to too few. Initially, I attempted to optimize the M + 2 step
sizes of the model and slop parameters with respect to this acceptance ratio, but this proved faulty for a
number of reasons.
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algorithm of Haario, Saksman, Tamminen, et al. (2001), which updates the (mean and

covariance matrix of the) proposal distribution Q while the sampling process is underway,

according to the quality of the accumulating total sample. My implementation of the

complete Adaptive MCMC sampler is shown as Algorithm 6.

With the Metropolis Hastings and Adaptive MCMC methods, the posterior probability

distribution(s) for the model and slop parameters of a model function can be generated,

given some dataset and fitting scale. Given these distributions, we can now estimate the

(Gaussian) uncertainties/standard deviations of the model parameters, using the following

method.

4.4.2. Computing Uncertainties from Parameter Distributions

In order to estimate model parameter uncertainties/error bars given MCMC-sampled

posterior distributions, the TRK suite uses what I refer to as the “Bar-Lowering“ method

from Trotter (2011). For some parameter, a 1−, 2− or 3σ confidence interval corresponds

to the range of possible parameter values that make up 68.27%, 95.45% and 99.73% of the

total integrated probability distribution, respectively. Given a model parameter sample

distribution, this method works by first binning the samples into a histogram, and then

iteratively finding exactly where 1σ, 2σ and 3σ, i.e. 68.27%, 95.45% and 99.73% of the

data lies. This algorithm is explicitly given as Algorithm 7.

Due to the binning nature of this algorithm, it also automatically computes the asymmetric

confidence intervals/standard deviations of parameters, i.e. ±1σ, ±2σ and ±3σ intervals.

For example, if the distribution of a parameter is a perfectly symmetric Gaussian, then

the −1σ width is equivalent to the +1σ width, the −2σ width is equivalent to the +2σ

width, etc. However, if the distribution is an asymmetric Gaussian, e.g. Equation (5.8)

(see §5.2 for an in-depth discussion of such asymmetric distributions), all six different

widths will be computed.
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Algorithm 6: Adaptive Metropolis-Hasting MCMC algorithm for sampling the
posterior distribution of model and slop parameters.

1 Function OptimizeMCMCProposalDist
Input :Optimum fitting scale s = s0 (or any scale of choice), sample size R

(100, 000 by default), “burn-in” count B (10, 000 by default), initial
guess for M model and slop parameters/starting point for Markov
chain Θg ≡ {ϑm, (σx, σy)}guess, dataset D ≡ {xn, yn, σx,n, σy,n}, and
any parameter priors p(Θ).

Output : {R samples of Θ from posterior, i.e. Θ ∼ P (Θ|D)}
2 begin
3 Notation: Σ, µ are the covariance matrix and mean vector of the proposal

distribution Q, respectively, which is Gaussian by default.
4 Initialize guess Σi for Σ and µi = Θg for µ.
5 Note: we use an automate the guessing of Σ, that can be fairly imprecise;

however, this algorithm is very guess-independent, and we have never had
issues with non-rapid convergence.

6 Initialize vector of all accepted samples as S = {Θg}
7 Initialize Markov Chain sampler starting point Θi = Θg and define

λ = 2.382/M
8 while Sample count ≤ R +B do
9 At iteration i+ 1: Sample trial Θt from posterior P (Θ) = LTRK(Θ)p(Θ)

given current proposal Q with Metropolis-Hastings acceptance
criterion:

10 while Θt not accepted do
11 Θt ∼ Q(µi, λΣi) (Gaussian by default)

12 α =
P (Θt)

P (Θi)
=
LTRK(Θt)p(Θt)

LTRK(Θi)p(Θi)
(See footnote 14.)

13 Accept Θt with probability min(1, α)

14 end
15 Θi+1 = Θt

16 Append Θi+1 to S
17 Update proposal Q:
18 γi+1 = 1/(i+ 1)
19 µi+1 = µi + γi+1(Θi+1 − µi)
20 Σi+1 = Σi + γi+1

[
(Θi+1 − µi)(Θi+1 − µi)T − Σi

]
21 end
22 Remove first B samples from S (to account for burn-in)
23 return S

24 end
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Algorithm 7:

1 Function GetUncertainties
Input :MCMC-sampled model parameter distribution S ≡ {{ϑm}} and

best fit parameters {ϑm, (σx, σy)}.
Output :±1−, ±2− and ±3σ confidence intervals/uncertainties of model

parameters {ϑm}.
2 begin
3 for each model parameter ϑ do
4 Make histogram of ϑ data from S, with k bins total
5 for all nσ of ±1−, ±2− and ±3σ do
6 Initialize brackets h = max(bins in histogram), l = 0
7 Initialize bar b = h/2
8 Let r = (amount of histogram bins ≥ b)/k
9 while |r − nσ| ≥ tolerance do

10 Update r
11 if r < nσ then
12 h = b
13 end
14 else if r ≥ nσ then
15 l = b
16 end
17 b = (l + h)/2

18 end
19 Let −nσ = midpoint parameter value of leftmost bin above bar
20 Let +nσ = midpoint parameter value of rightmost bin above bar

21 end

22 end
23 return {±1σ,±2σ,±3σ error bars ∀ model parameters {ϑm}}
24 end
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4.4.3. Reality Check: A Linear TRK Example Fit

At this point I have discussed all of the mechanisms for the basic functionality of the

TRK algorithm suite. Before I delve into the advanced/additional topics of the following

chapter, I will present a “reality check” of the TRK suite in the form of a basic linear

fit. Consider the dataset shown in red in the top left of Figure 4.417, and model of the

functional form y = mx+ b, i.e. model parameters of b and m. Running a full TRK fit

(i.e. scale optimization, likelihood maximization and then MCMC-generated uncertainty

computation) resulted in the model distribution shown in the top left of Figure 4.4. As

expected, this slop-dominated dataset (i.e. the small error bars are not enough to account

for the scatter of the data) resulted in a linear fit with high slop parameters (σx, σy), as

evidenced by the fairly large 1−, 2− and 3σ confidence intervals of the model distribution

shown18. After running this fit, I also show the results of the MCMC-generated model

parameter distributions (the bottom of Figure 4.4), including a confidence ellipse in

parameter space with 1−, 2− and 3σ regions shaded (top right of Figure 4.4), generated

via kernel density estimation.

I have now covered all of the essential parts of the TRK fitting suite, and provided an

example of its usage. Before I discuss the applications and more complicated examples

of TRK fitting, and compare the method to similar algorithms, I will first examine

further algorithms and options of the TRK suite, including an automated algorithm for

the minimization of model parameter correlation for certain models, and allowing for

asymmetric error bars and/or slop parameters.

17The error bars are possibly too small to see; I choose these error bars to illustrate the fitting behavior
for a slop-dominated dataset.

18These intervals are computed with the slop values and the model parameters, given some model.

Specifically, the nσ vertical offset of the interval boundaries are given by ±n
√
σ2
y +

(
dyc(x)

dx σx

)2
, from

Trotter (2011).
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Figure 4.4.: Top left: Example extrinsic scatter-dominated dataset (red) with small x− and y− error bars
(barely visible), alongside linear fit model distribution y = mx+ b with 1−, 2− and 3σ slop
confidence regions visible in blue. Top right: model parameter confidence ellipse with 1−, 2−
and 3σ regions shaded, generated from the posterior probability distributions for b and m
found via MCMC, bottom.
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Algorithms

In the previous chapter I examined the basic usage of the TRK statistic to fit models to

data, including fitting scale optimization, likelihood maximization, and model parameter

probability distribution generation. These features are satisfactory for many fitting tasks,

but more complicated situations may arise that require special, generalized treatment. In

this chapter, I will first introduce an algorithm developed to remove correlation between

model parameters. From here, I will then examine the more complicated, but general case

of having asymmetric uncertainties, intrinsic and/or extrinsic, in a dataset, and how this

can be fitted to as part of the TRK suite.

5.1. Automatic Model Parameter Correlation Removal

and Pivot Points

To begin, consider some linear model of the form y = mx+ b; typically, the fitted slope m

will be correlated with the fitted intercept b, i.e. the confidence ellipse between the two

parameters in parameter space will be correlated/tilted. To see why, consider redefining

such linear models as y = m(x− xp) + b, with some “pivot point” xp. Then, the intercept

parameter is effectively b − mxp, so given some fitted m, the fitted intercept will be

impacted by m, depending on the choice of xp. Therefore, the uncertainty in b depends

on the uncertainty in m. As shown in Trotter (2011), an optimal choice for xp exists such

that the correlation of b and m is minimized (for some dataset).
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Figure 5.1.: From Trotter (2011), this figure illustrates two different linear fits on the same dataset, with
both sets of model parameters b,m offset from some best fit b,m, representing the uncertainty
in this best fit. As shown, both of these lines intersect at some optimum pivot point xp,
plotted in red; if this optimal xp is chosen when fitting the model, the correlation between b
and m will be minimized.
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I have devised an algorithm for automatically determining the pivot point for some model;

I note that it can be used not just on linear models, but also any linearizable model, as

long as the model can be (re-)written in the form of y = m(x− xp) + b. As an example,

consider the power-law model y(x) = a0

( x

10xp

)a1
. To linearize this, begin by taking the

log of both sides as

log10 y(x) = log10

[
a0

( x

10xp

)a1]
= log10 a0 + log10

( x

10xp

)a1
= log10 a0 + a1 log10

( x

10xp

)
= log10 a0 + a1 [log10 x− log10 10xp ] ≡ log10 a0 + a1 [log10 x− (log10 x)p] .

(5.1)

As such, the linearized version of the power law has intercept log10 a0 → b, slope a1 → m,

pivot point (log10 x)p, and the data transforms as log10 y → y and log10 x→ x.

To introduce the correlation removal/pivot point-finding algorithm, begin by considering

two linear (or linearized) fits

y = m1(x− xp) + b1 and y = m2(x− xp) + b2 (5.2)

with some shared pivot point xp (see Figure 5.1). To determine the optimum pivot point,

we take an iterative approach. As shown in Figure 5.1, the optimum pivot point should

be the x−value where the two lines intersect; as such, we set Equations (5.2) equal to

each other and solve to obtain

x = xp +
b1 − b2
m2 −m1

. (5.3)

In order to use Equation (5.3) to solve for the optimum pivot point, we need two sets of slope

and intercept parameters. However, what parameters should be used? Because no choice

for these parameters is known a priori, I take a Monte Carlo-based approach by using the

Metropolis Hastings algorithm (Algorithm 6) to generate a large sampling (e.g. R ∼ 10, 000)

of intercept and slope parameters (b,m), given some previous iteration (or guess, if on the

first iteration) of the pivot point xp = xoldp . I then generate K ∼ 100, 000 randomly-drawn

2-combinations of pairs of (b,m) from this sample (i.e. various {(b1,m1), (b2,m2)} of
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Equation (5.3))1. From this, I compute 100, 000 possible new pivot points xnewp using

Equation (5.3). From here, how can we use this distribution of xnewp to determine the

optimal xnewp , i.e. the next iteration of the true optimal pivot point that will minimize

correlation?

To start, I desired to choose a weight wxnewp
for each value of xnewp according to the

uncertainty σxnewp
of it’s computation, i.e. wxnewp

= 1/σ2
xnewp

, given the {(b1,m1), (b2,m2)}
that were used to compute it2. To do so, I used standard propagation of uncertainty to

first linear order with Equation (5.3) to obtain

σxnewp
'
√

2

(
σb

m2 −m1

)2

+ 2

[
b1 − b2

(m2 −m1)2

]2
σ2
m , (5.4)

where I have assumed that the uncertainties σb1 = σb2 ≡ σb and σm1 = σm2 ≡ σm. Next,

note that for a linear model y = m(x− xp) + b ≡ mx′ + b, we have that σ2
b = σ2

m(x′)2 =

σ2
m(x− xp)2, where the overline indicates an average over all N datapoints (Morrison

(2014)). Combining this with Equation (5.4), we now have that

σxnewp
'
√

2
σ2
m(x− xp)2

(m2 −m1)2
+ 2

(b1 − b2)2
(m2 −m1)4

σ2
m =
√

2σm

√
(x− xp)2

(m2 −m1)2
+

(b1 − b2)2
(m2 −m1)4

.

(5.5)

Given that each xnewp can be weighted according to wxnewp
= 1/σ2

xnewp
, we can factor out

constants of proportionality in Equation (5.5) to obtain

wxnewp
∝
[

(x− xp)2
(m2 −m1)2

+
(b1 − b2)2

(m2 −m1)4

]−1
. (5.6)

Finally, note that for our iterative approach, x ranges over the sample of the K = 100, 000

new pivot points xnewp computed from Equation (5.3), and xp is the previous iteration’s

optimal single pivot point xoldp . As such, a single ith new pivot point xnewp,i computed using

1I note that although I don’t use explicit mechanisms to avoid duplicate 2-combinations, there are(
10,000

2

)
' 5× 107 possible randomly-chosen 2-combinations from the set of 10, 000 samples, so if 100, 000

are combinations drawn, there is only a ' 0.2% chance of having a single duplicate.
2This relationship between weight and uncertainty assumes (approximately) Gaussian error.
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Figure 5.2.: Ten different iterations for the MCMC-generated distributions of new pivot points xnewp

computed with Equation (5.3) and weighted according to Equation (5.7), overlapped. For
each iteration we take the optimal value of the new pivot point to be the weighted half-sample
mode (see Bickel and Fruehwirth (2005)) of that iteration’s distribution, and use this optimal
value as xoldp for the next iteration in order to compute the next distribution of xnewp . As
can be seen (given that only four or so iterations are visible), I have found this algorithm to
converge quickly, usually only needing a few iterations, if more than one is needed at all.

some {(b1,m1), (b2,m2)} with Equation (5.3) is weighted according to

wxnewp,i
∝


∑K

j=1

[(
xoldp +

b1,j−b2,j
m2,j−m1,j

)
− xoldp

]2
K(m2 −m1)2

+
(b1 − b2)2

(m2 −m1)4


−1

=


∑K

j=1

(
b1,j−b2,j
m2,j−m1,j

)2
K(m2 −m1)2

+
(b1 − b2)2

(m2 −m1)4


−1

, (5.7)

which is the final expression that is used. Finally, I take the weighted half-sample mode

(i.e. Bickel and Fruehwirth (2005)) of the K = 100, 000 values for xnewp weighted according

to Equation (5.7), and use that as the next iteration for the optimum xp. From here, I

iterate until convergence.

I summarize the pivot point-finding/correlation removal method in Algorithm 8. Once

the final pivot point has been found, it is stored as part of the model, and the rest of the
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TRK algorithm can be used as normal. As an example of this method, Fig. 5.3 shows the

results of running the pivot point optimization algorithm on the same linear fit dataset as

in Figure 4.4 of §4.4.3, then running the regular TRK scale optimization, fit and MCMC

uncertainty computation as usual. Observe in this figure how the fitted slope m is mostly

unchanged from Figure 4.4, but the intercept b is noticeably different. Most notably, the

parameter space confidence ellipse of b and m is no longer tilted, indicating a loss of

correlation between the two parameters. Quantifiably, note that for the fit in Figure 4.4

where the pivot point was not optimized beforehand, the sampled (b,m) has a Pearson

correlation coefficient of R2 = −0.502, indicating (negative) correlation as expected. On

the other hand, when the pivot point is optimized before running this fit, shown in Fig. 5.3,

the same correlation coefficient is only R2 = 0.056 ' 0, indicating almost no correlation,

as expected.

The ability to minimize parameter correlation for linearized models is a useful and widely

applicable addition to the TRK suite. Next, in order to further generalize the TRK

statistic, I will explore the possibility of introducing asymmetric error bars and/or slop

parameters.

5.2. Asymmetric Intrinsic and/or Extrinsic Uncertainty

Throughout this thesis I have only considered models that have intrinsic and extrinsic

scatter (i.e. error bars and slop, respectively) that follow symmetric Gaussian distributions,

i.e. Equation (2.4). However, there remains the distinct possibility for either or both the

error bars and the slop/extrinsic scatter to follow asymmetric distributions, such as the

skew-normal distribution. A number of examples of asymmetric error bars within datasets

and/or asymmetric slop within models are given in Trotter (2011), and as shown in that

work, a reasonable approximation of such distributions is defined as the (normalized)

asymmetric Gaussian distribution,

NA(x′;µ, σ+, σ−) ≡ 2√
2π(σ+ + σ−)


exp

{[
−1

2

(
x′−µ
σ+

)2]}
if x′ ≥ µ

exp

{[
−1

2

(
x′−µ
σ−

)2]}
if x′ < µ

. (5.8)
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Algorithm 8: Method to remove model parameter correlation/determine pivot
point for linearized models

1 Function FindPivotPoint
Input : Linearized model of the form yc(x) = m(x− xp) + b, dataset

D ≡ {xn, yn, σx,n, σy,n}, and initial guess for optimum pivot point
xoldp .

Output :Optimum pivot point xp that minimizes correlation between model
parameters b and m.

2 begin
3 Initialize R = 10, 000, K = 100, 000 (by default)
4 while xnewp not converged do
5 Initialize empty arrays X , W for new pivot points and their weights,

respectively
6 Generate R samples of (b,m) ∼MetHastSampler()(see Algorithm 6)
7 Store these samples as the set P
8 Compute K new pivot points:
9 for i = 1, 2, · · · , K do

10 Randomly draw pair {(b1,m1), (b2,m2)}. from P
11 Let xnewp,i = xoldp + b1−b2

m2−m1

12 Store xnewp,i in X
13 end
14 Weight these K new pivot points:
15 for i = 1, 2, · · · , K do

16 Let weight wxnewp,i
=


∑K

j=1

(
b1,j−b2,j
m2,j−m1,j

)2
K(m2 −m1)2

+
(b1 − b2)2

(m2 −m1)4


−1

17 Store wxnewp,i
in W

18 end
19 Compute optimum xnewp = WeightedHalfSampleMode(X ,W)

20 xnewp → xoldp
21 end

22 end
23 return xp = xnewp
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Figure 5.3.: Top left: The same extrinsic scatter-dominated dataset as in Figure 4.4 but now with pivot
point xp in model y = m(x− xp) + b optimized to minimize correlation between b and m,
using Algorithm 8. Model is shown with 1−, 2− and 3σ slop confidence regions visible in blue.
Top right: model parameter confidence ellipse with 1−, 2− and 3σ regions shaded, generated
from the posterior probability distributions for b and m found via MCMC, bottom. Note
that with pivot point optimized, the confidence ellipse is now no longer tilted as in Fig. 4.4,
indicating the removal of correlation, also evidenced by a Pearson correlation coefficient of
R2 = 0.056 ' 0.
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From here, a 2D asymmetric Gaussian is simply the product of two of these 1D asymmetric

Gaussians. Note that this is just a general case of the typical symmetric Gaussian, as this

expression simplifies to Equation (2.4) when σ− = σ+ ≡ σ. In the next section, following

the work of Trotter (2011), I will show how this distribution can be introduced to the

TRK statistic in the form of both asymmetric error bars and/or slop.

5.2.1. Theory

I will first introduce some notation. Following Trotter (2011), I parameterize the asymmetric

x and y error bars of some nth datapoint with some parameters {σx,n+, σx,n−} and

{σy,n+, σy,n−}, respectively, following Equation (5.8). If asymmetric slop/extrinsic scatter

along x and/or y is also modeled, such asymmetry is characterize with parameters

{σx+, σx−} and {σy+, σy−}, respectively. Now, in order to perform TRK fits on asymmetric

data and/or models, because I have fundamentally generalized the concept of intrinsic

and extrinsic scatter, the TRK statistic must be re-developed following the analysis of §2
with this new asymmetric formalism. To begin, consider a model distribution about the

model curve yc(x;ϑm) that has asymmetric Gaussian slops (σx±, σy±), alongside a single

nth datapoint with asymmetric Gaussian error bars (σx,n±, σy,n±), illustrated in Figure 5.4.

Delving into this section, observe that the joint probability of this data-point pn requires

evaluating the convolution of the two asymmetric Gaussians defined by (σx±, σy±) and

(σx,n±, σy,n±), according to Equation 2.6.

As shown in Trotter (2011), the convolution of two asymmetric Gaussian distributions

does not itself exactly result in an asymmetric Gaussian. However, Trotter showed that an

excellent approximation of such a convolution is a 2D asymmetric Gaussian with widths

defined by (Σx,n±,Σy,n±) and centroid defined by (xn + δx,n, yn + δy,n), where

Σx,n± ≡
(
σ2
x∓ + σ2

x,n±
)1/2

Σy,n± ≡
(
σ2
y∓ + σ2

x,n±
)1/2

(5.9)

and (δx,n, δy,n) describes an offset from the data-point which can be found using an

empirical method developed by Trotter, given in Algorithm 9, of which the derivation of

is beyond the scope of this work. Given that the likelihood is the product of all N of the

49



5. The TRK Codebase: Additional Algorithms

Σx,n+

Σy,n+

Σy,n−

(xn + δx,n, yn + δy,n)

(xt,n, yt,n)

I−+

I++

I+−

x1

x2

yc(x;ϑm)

x

y

Σx,n−

Figure 5.4.: From Trotter (2011), a visualization of the 2D joint probability for an asymmetric model curve
yc and data-point (xn, yn) with asymmetric error bars. This joint probability is an integral
that can be approximated by a 2D asymmetric Gaussian with widths (Σx,n±,Σy,n±) centered
at some (xn + δx,n, yn + δy,n). The integral is broken into three segments according to the
quadrants about the convolved centroid (xn + δx,n, yn + δy,n), in this case I−+, I++ and I+−,
respectively, with subscripts denoting which quadrant the integral/linear approximation of the
model curve is located in. For this example, I−+ (red) through quadrant 2 has limits (−∞, x1],
I++ (green) through quadrant 1 has limits [x1, x2], and I+− (blue) through quadrant 4 has
limits [x2,∞).
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joint probabilities of the datapoints, using this 2D asymmetric Gaussian approximation for

the integral in Equation (2.6) used to compute pn gives rise to an interesting observation.

From Trotter (2011), in this asymmetric case the likelihood will have the form of a χ2-like

statistic, but with the datapoint shifted from (xn, yn) by (δx,n, δy,n), with ±1σ error bars

expanded in quadrature by the ±-components of the model slop.

In order to compute the joint probability pn for a single datapoint in this asymmetric

case, I will first refer back to the example given in Figure 5.4 and follow §B of Trotter

(2011). As mentioned, we can approximate the convolution of the two 2D asymmetric

Gaussians from Equation (2.6) as a single, shifted 2D asymmetric Gaussian with widths

(Σx,n±,Σy,n±) and centroid (xn + δx,n, yn + δy,n). Then, following the analysis of §2.2, I

approximate the model curve yc(x;ϑm) as a line tangent to the asymmetric convolved

(and shifted) error “ellipse” of the datapoint, such that solving Equation (2.13) for the

tangent point xt,n requires changing (Σx,n,Σy,n) according to which quadrant about the

ellipse that the tangent point lies in. For example, if the tangent point is in Quadrant I as

in Fig. 5.4, Equation (2.13) transforms with (Σx,n,Σy,n)→ (Σx,n+,Σy,n+).

Observe Equation (2.15), the symmetric version of the approximate analytic expression for

pn, and note the factor dun
dx

. This factor is dependent on the choice of rotated coordinate

system (un, vn), following §2.2.3. Combining the choice of (un, vn) that creates the TRK

statistic and this asymmetric case, I then find that dun
dx

becomes

dun
dx
≡
(

dun
dx

)
±∓

=
m2
t,nΣ2

x,n± + Σ2
y,n∓√

m2
t,nΣ4

x,n± + Σ4
y,n∓

, (5.14)

where the subscripts (±∓) are determined by which quadrant the tangent point lines in,

i.e
(
dun
dx

)
++

corresponds to quadrant I,
(
dun
dx

)
−+ to quadrant II,

(
dun
dx

)
−− to quadrant III,

and
(
dun
dx

)
+− to quadrant IV. In other words, the first subscript indicates the choice of

Σx,n± and the second indicates the choice of Σy,n∓ in Equation (5.14).

Proceeding on, I note that in order to obtain an analytic expression for an asymmetric

pn analogous to Equation (2.15), we must evaluate the (−∞,∞) integral of Equation

(2.14). In general, this joint probability integral must now be broken up into three separate

integrals (I1, I2, I3), as the tangent line can cross through up to three quadrants of the
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Algorithm 9: Method from Trotter (2011) used to determine offsets (δx,n, δy,n)
from data-point (xn, yn) that are used to compute the 2D asymmetric Gaussian
joint probability distribution for some nth data-point.

1 Function GetAsymmShifts
Input :Asymmetric slop parameters (σx±, σy±) and asymmetric error bars

(σx,n±, σy,n±)
Output :Offset (δx,n, δy,n)

2 begin
3 Initialize σL ≡ max {σy+, σy−}, σS ≡ min {σy+, σy−},
4 σn,L ≡ max {σy,n+, σy,n−}, σn,S ≡ min {σy,n+, σy,n−}, and
5 σmax ≡ max {σL, σn,L}.

6 Let ξ ≡ σS
σL

+
σn,S

σn,L
and η ≡

{
σn,S

σn,L
− σS

σL
if σn,L < σL

σS
σL
− σn,S

σn,L
if σn,L ≥ σL .

7 Define r ≡ min{σL,σn,L}
max{σL,σn,L} , ξ′ =

{
ξ if ξ ≤ 1
2− ξ if ξ > 1

and

8 η′ =

{
0 if ξ′ = 0

2ξ′
[
1
2
η
ξ′

+ 1
]n(r)

− ξ′ otherwise
, where n(r) ≡ r−0.4087.

9 Compute δ∗ = σmaxN(r) [f(ξ)g(η′) + h(ξ)], given N, f, g and h:
10

N(r) = −0.5326r2 + 1.5307r + 0.0019 (5.10)

f(ξ) =


0 if ξ = 0 ,
0.2454ξ−1.1452 if ξ ≤ 1 ,
0.2454ξ−0.5203 if ξ > 1 ,

(5.11)

g(η′) = η′2 (5.12)

h(ξ) = −0.042ξ2 − 0.1602ξ + 0.4884 . (5.13)

if One of the distributions is symmetric then

11 Let i =

{
+1 if σn,L = σy,n+ or σL = σy−
−1 if σmax = σy,n− or σmax = σy+

12 δy,n = i× δ∗
13 end
14 if Both distributions are asymmetric then

15 Let i =

{
+1 if σmax = σy,n+ or σmax = σy−
−1 if σmax = σy,n− or σmax = σy+

16 if σL = σy− and σn,L = σy,n+, or σL = σy+ and σn,L = σy,n− then
17 δy,n = i× δ∗
18 end
19 else

20 δy,n = i× δ∗ × sin
(
π
2
η′

ξ′

)
×
{
ξ0.7413 if ξ ≤ 1
ξ−0.1268 if ξ > 1

21 end

22 end
23 Repeat the above but with y → x to compute δx,n.
24 return (δx,n, δy,n)

25 end
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ellipse, such that pn = I1+I2+I3. Following Figure 5.4, these three integrals will have limits

of (−∞, x1], [x1, x2] and [x2,∞), where x1 = xn+δx,n and x2 is the point where the tangent

line intersects with the shifted datapoint centroid, i.e. yt,n+mt,n(x−xt,n) = yn+δy,n. Note

that for all three integrals, the factor
(
dun
dx

)
±∓ is the same, given that it only depends on

which quadrant the tangent point lies in. Notating the Gaussian cumulative distribution

function as

Φ(z) ≡
∫ z

−∞
e−

1
2
x2 dx , (5.15)

evaluating these three integrals with the asymmetric distributions results in the first

integral being

I1 =

(
dun
dx

)
κΣx,n±Σy,n∓Φ(z−+(x1))√

m2
t,nΣ2

x,n± + Σ2
y,n∓

× exp

−1

2

yt,n − yn − δy,n −mt,n(xt,n − xn − δx,n)√
m2
t,nΣ2

x,n± + Σ2
y,n∓

2 (5.16)

with normalization factor3 κ ≡ 2/[π(Σx,n+ + Σx,n−)(Σy,n+ + Σy,n−)], where the two sign

subscripts of (Σx,n±,Σy,n∓), and of the transformed limit of integration

z±∓(x) =
Σ2
y,n∓(x− xn − δx,n) +m2

t,nΣ2
x,n± [x− xt,n − (yn + δy,n − yt,n)/mt,n]

Σx,n±Σy,n∓

√
m2
t,nΣ2

x,n± + Σ2
y,n∓

(5.17)

are dependent on which two Σx,n±,Σy,n∓ widths of the ellipse bound the quadrant that

this first integral goes through. For example, in the case of Figure 5.4, the tangent point

is in quadrant I, so this first integral is in quadrant II, which is bounded by Σx,n− and

Σy,n+, so in this case Equation (5.16) simplifies to

I1 =

(
dun
dx

)
κΣx,n−Σy,n+Φ(z−+(x1))√

m2
t,nΣ2

x,n− + Σ2
y,n+

× exp

−1

2

yt,n − yn − δy,n −mt,n(xt,n − xn − δx,n)√
m2
t,nΣ2

x,n− + Σ2
y,n+

2 . (5.18)

3Note that this normalization factor is the same for all three integrals within any of the four quadrants
of the ellipse.
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The second integral is similarly found to be

I2 =

(
dun
dx

)
κΣx,n±Σy,n∓ [Φ(z±∓(x2))− Φ(z±∓(x1))]√

m2
t,nΣ2

x,n± + Σ2
y,n∓

× exp

−1

2

yt,n − yn − δy,n −mt,n(xt,n − xn − δx,n)√
m2
t,nΣ2

x,n± + Σ2
y,n∓

2 ,

(5.19)

and the third is found to be

I3 =

(
dun
dx

)
Σx,n±Σy,n∓ [1− Φ(z±∓(x2))]√

m2
t,nΣ2

x,n± + Σ2
y,n∓

× exp

−1

2

yt,n − yn − δy,n −mt,n(xt,n − xn − δx,n)√
m2
t,nΣ2

x,n± + Σ2
y,n∓

2 , (5.20)

where again, the sign subscripts of (Σx,n±,Σy,n∓) and z±∓(x) are dependent on which

two Σx,n±,Σy,n∓ widths of the ellipse bound the quadrant that the respective integral

goes through. Then, continuing with the example in Figure 5.4, the second integral is in

Quadrant I while the third is in Quadrant IV, so we have that

I2 =

(
dun
dx

)
κΣx,n+Σy,n+ [Φ(z++(x2))− Φ(z++(x1))]√

m2
t,nΣ2

x,n+ + Σ2
y,n+

× exp

−1

2

yt,n − yn − δy,n −mt,n(xt,n − xn − δx,n)√
m2
t,nΣ2

x,n+ + Σ2
y,n+

2 ,

(5.21)

and

I3 =

(
dun
dx

)
Σx,n+Σy,n− [1− Φ(z+−(x2))]√

m2
t,nΣ2

x,n+ + Σ2
y,n−

× exp

−1

2

yt,n − yn − δy,n −mt,n(xt,n − xn − δx,n)√
m2
t,nΣ2

x,n+ + Σ2
y,n−

2 . (5.22)

From here, the joint probability of the datapoint is found with pn = I1 + I2 + I3, which is
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used to define the TRK statistic (i.e. the likelihood) in the same way as the symmetric

case.

5.2.2. Implementation

The introduction of asymmetric error bars and/or slop to the TRK suite manifests in

a number of ways, the first being the change in the TRK likelihood function LTRK. I

have shown how to compute the joint probability pn for a single nth data-point with

asymmetric error bars and/or slop, by adding up the three integrals I1, I2 and I3 of

Equations (5.16), (5.19) and (5.20), respectively. From here, LTRK is simply the product of

all N of the pn of the datapoints, following Equation (2.7). An essential, but not necessarily

obvious thing to point out is that now, there are (up to) four slop parameters in total,

(σx+, σx−, σy+, σy−) ≡ (σx±, σy±). As such, maximizing LTRK/ minimizing −2 lnLTRK

to find a best fit with the Nelder-Mead method as described in §4.2 will now require

performing the optimization with respect to all M + 4 parameters, given M non-slop

model parameters. Furthermore, as discussed on page 51, the driving equation of the

tangent point-finding routine, Equation (2.13), must be evaluted with the correct two

(Σx,n±,Σy,n±), according to which quadrant of the datapoint ellipse the tangent point is

located in. I also note that the shifted data-point centroid (xn + δx,n, yn + δy,n), found

with Algorithm 9, must be used in place of the unshifted (xn, yn) of the symmetric case

at all steps of running a TRK fit. Finally, I note that the scale optimization procedure of

§4.3 does not obviously generalize for the asymmetric case; this issue will be tackled in

the future, as discussed in §7.
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The final major chapter of this work will first compare the TRK statistic/suite to similar

methods in §6.1, and schematically demonstrate the improvements over thereof of TRK.

From here, I will demonstrate the TRK fitting algorithms in practice within §6.2, by

performing TRK fits with models that involve parameters related to the dust-extinction

of interstellar light.

6.1. Comparison to Similar Algorithms

Surprisingly, there are not very many algorithms that can be used to fit models to data

that has uncertainty in two dimensions (even fewer that can account for both intrinsic

and extrinsic uncertainties). To further examine the usefulness of the TRK suite, I will

begin by comparing it to various similar algorithms, and showing how, overall, it is usually

the most robust and general choice. First, I will discuss a non-Bayesian least-squares

algorithm, then we will explore two Bayesian algorithms that are similar, but inferior to

TRK.

Perhaps the most well known/most-used 2D-uncertainty fitting method is Orthogonal

Distance Regression/ODR, also known as Total Least Squares1. ODR is a nonlinear

least-squares regression method that minimizes the distances between the datapoints and

the fitted curve along some direction(s) determined by the error bars of the data, e.g.

Brown, Fuller, et al. (1990). Despite being heavily used, there are a number of downsides

to this method as compared to the TRK statistic, for example:

1For example, one of the most commonly used implementations of ODR is the scipy.odr Python
module (see https://docs.scipy.org/doc/scipy/reference/odr.html.)
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1. There is no obvious method to include/parameterize extrinsic scatter/slop in the

dataset with ODR.

2. There is no general method to incorporate ODR into a Bayesian formalism, e.g.

including priors, that we have found.

3. As shown by Isobe et al. (1990), ODR is not scalable/scale invariant, i.e. changing

the units of the axis/axes will result in different, unequivalent fits.

As such, when a rigorous, flexible and generalizable fitting algorithm is desired over pure

computational speed, TRK will be a better choice over ODR.

As described in §2.2.3, the choice of the arbitrary rotated coordinates (un, vn) and therefore

the factor dun
dx

in Equation (2.16)—the likelihood function in our general case—will be

what defines a given statistic’s criteria for a best fit. Trotter (2011) showed that various

choices of dun
dx

will lead to different statistics with varying properties. There exist two

other 2D-uncertainty Bayesian model-fitting statistics in the literature, both of which

are thoroughly explored and compared to the TRK statistic in Trotter’s work: that of

D’Agostini (2005), or D05, and that of Daniel E Reichart (2001), or R01. In the following,

we will summarize Trotter’s work of showing how both of these statistics are derived from

certain choices of dun
dx

, and comparing them to the TRK statistic.

The D05 statistic of D’Agostini (2005) is defined by setting dun = dx, i.e. dun
dx

= 1 in

Equation (2.16), giving a likelihood function of

LD05 ∝
N∏
n=1

1√
m2
t,nΣ2

x,n + Σ2
y,n

exp

{
−1

2

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

}

−2 lnLD05 =
N∑
n=1

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

+
N∑
n=1

ln
(
m2
t,nΣ2

x,n + Σ2
y,n

)
+ C . (6.1)

From Trotter (2011), “The D05 statistic can be seen to be analogous to a one-dimensional

χ2 statistic in y, where the difference between the model and the datapoint is the difference

between the tangent line at x = xn and yn, and where the 1σ uncertainty in the convolved

datapoint is replaced by the quadrature sum of Σy,n and Σx,n projected into the y-direction

using the slope mt,n. D05 differs from a traditional χ2 statistic in that the denominator

of the argument of the exponential, and the prefactor of the exponential are themselves

functions of the slops (σx, σy), which are treated as free model parameters.” However, as
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shown by Trotter, while D05 is scalable and reduces to a 1D χ2-like statistic in the limit

of Σx,n → 0, it is not invertible, unlike the TRK statistic.

The R01 statistic of Daniel E Reichart (2001) is defined using dun = dsn, where dsn ≡√
dx2 + dy2 is parallel to the tangent line with slope mt,n, giving dun

dx
=
√

1 +m2
t,n. Using

Equation (2.16), this results in a likelihood of

LR01 ∝
N∏
n=1

√
1 +m2

t,n

m2
t,nΣ2

x,n + Σ2
y,n

exp

{{
−1

2

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

}}

−2 lnLR01 =
N∑
n=1

[yn − yt,n −mt,n(xn − xt,n)]2

m2
t,nΣ2

x,n + Σ2
y,n

−
N∑
n=1

ln

(
1 +m2

t,n

m2
t,nΣ2

x,n + Σ2
y,n

)
+ C . (6.2)

The R01 statistic was designed to be invertible (Daniel E Reichart (2001)); however, as

shown in Trotter (2011), although it is invertible, the statistic is neither scalable, nor

reduces to a 1D χ2-like statistic in the limit of Σx,n → 0.

While D05 is scalable and reduces to a 1D χ2-like statistic in the limit of Σx,n → 0, it is

not invertible. Similarly, while R01 is invertible, it is not scalable and it does not reduce to

a 1D χ2-like statistic in the aforementioned limit. The TRK statistic, however, manages to

be the best of both worlds, as it is invertible (see §3.0.1), reduces to a 1D χ2-like statistic

(see §2.2.2 and Trotter (2011)), and by using the scale optimization algorithm of §4.3, can

be made to be scale invariant.

6.2. Interstellar Extinction Model Parameter Fits

In Trotter (2011), various TRK fits were made to model correlations between parameters

that describe empirical fits to the observed spectral extinction by dust of light originating

from stars in the Milky Way and Magellanic Clouds. These fits served to be a “proof of

concept” of Trotter’s “science code” implementation of the TRK statistic. Now that I

have developed the TRK statistic in the form of a much more automated, generalizable

and computationally efficient implementation, I will redo these fits, with updated datasets,

as follows.
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The aforementioned dust extinction models were first formalized in Cardelli, Clayton, and

Mathis (1989) (CCM) and Edward L Fitzpatrick and Derck Massa (1988) (FM), and

are summarized and described in Figure 6.1. In the following section, I will explore the

relationships between the empirical parameters c1, c2, c3, and γ of the CCM/FM model. As

described in Trotter (2011), there are known correlations between c1 and c2, and between

the so-called “bump height” parameter BH ≡ c3/γ
2 (see Fig 6.1) and c2. The dataset that

was fit to in Trotter (2011) is comprised of extinction parameter measurements from 417

stars in the Milky Way, from Valencic, Clayton, and Gordon (2004), and 23 stars from

the Large and Small Magellanic Clouds, from Gordon et al. (2003). This dataset contains

values and symmetric error bars for c1, c2, c3 and γ (as well as other CCM/FM parameters

that don’t concern our fits), through which Trotter derived values and error bars for BH

through standard propagation of uncertainty2.

For this thesis, following a thorough search through the literature, I updated the full

dataset with data from 328 stars in the Milky Way from E. Fitzpatrick and Massa (2007),

and one star in M31 from Clayton et al. (2015). From here, I redid the fits of the models

describing c1 vs. c2 and BH vs. c2 that were formulated and presented in Trotter (2011),

with the updated dataset of N = 729 values of {c1, c2,BH} with symmetric error bars

(again computing error bars for BH ≡ c3/γ
2 with standard propagation of uncertainty).

Following Trotter (2011), I assigned some weight wn to each nth datapoint that is inversely

proportional to the integral of the sum of all N of the intrinsic Gaussian c2 distributions

of the datapoints, weighted by the Gaussian of the corresponding c2,n, i.e.

wn ∝
[∫ ∞
−∞

(
N (c2|c2,n, σc2,n)

N∑
i=1

N (c2|c2,i, σc2,i)
)

dc2

]−1
, (6.3)

and then normalizing the weights such that the minimum weight is unity3. This weighting

is used in order to increase the weight of/“oversample” the occasional high c2 datapoint

(Trotter (2011)). From here, I ran TRK fits for c1 vs. c2 and BH vs. c2, that will be

2The parameters from Valencic, Clayton, and Gordon (2004) were calculated with a normalization
given the parameter RV by Trotter (2011), and their error bars were assigned through standard propagation
of uncertainty.

3Datapoint weights {wn} are implemented into the TRK likelihood by multiplying the terms within
the summations of the lower line of Equation (2.17) by wn, which translates to a weighted likelihood of

LTRK ∝
N∏
n=1

(
m2
t,nΣ2

x,n + Σ2
y,n

m2
t,nΣ4

x,n + Σ4
y,n

)wn/2
× exp

{
−1

2
wn

[yn − yt,n −mt,n(xn − xt,n)]
2

m2
t,nΣ2

x,n + Σ2
y,n

}
.
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Figure 6.1.: From Trotter (2011), the combined CCM and FM extinction model curve along a typical
Milky Way line of sight. The y-axis is defined to be the ratio between the λ− V color excess
E(λ− V ) at a given wavelength λ, and the B − V color excess E(B − V ), where the color
excess is defined as the difference, in magnitudes, of the absorption due to dust at two given
wavelengths. In this case, B and V correspond to wavelengths in the middle of standard
blue and visible photometric filters. The color excess ratio plotted on the y-axis is thus
proportional (with an offset) to the magnitude of dust extinction at a given wavelength λ.
The x-axis is proportional to the inverse of λ, specifically x ≡ (λ/1 µm)−1, or, equivalently,
proportional to frequency. As shown, the parameters c1 and c2 describe the intercept and
slope of a linear component of the model. The parameter γ parameterizes the width of the
“bump” in the center of the model (also known as the “UV bump”), while the parameter
BH ≡ c3/γ2 describes the height of this bump.
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described and presented in the following subsections.

6.2.1. Fitting c1 vs. c2

From Trotter (2011), the parameters c1 and c2 are strongly linearly correlated, as the two

describe the intercept and slope of a linear component of the FM extinction model. The

model distribution that I will use to parameterize this correlation, defined by Trotter, has

a model curve yc(x;ϑm) of the form

c1,c(c2;ϑm) = bc1 +mc1
(
c2 − cpc12

)
, (6.4)

where ϑm = {bc1 ,mc1} are the model parameters and c
pc1
2 is the pivot point of the model,

of which the choice of affects the amount of correlation between bc1 and mc1 (see §5.1).

To fit this model to the dataset, I first ran the scale optimization algorithm of §4.3 to de-

termine the optimum fitting scale s0. Next, I ran the parameter correlation removal/pivot

point-finding algorithm of §5.1 to determine the pivot point c
pc1
2 that minimizes the corre-

lation between bc1 and mc1 . From here, I determined the best fit model and (x−, y−)slop

parameters ϑm = {bc1 ,mc1} and {σc1c2 , σc1}, respectively using the Downhill Simplex

method of §4.2 at s0
4. Finally, I used the Adaptive MCMC and Bar-Lowering methods of

§4.4.1 to sample the distribution of the model and slop parameters, and compute their

uncertainties, respectively.

The numerical results of this fit are given in Table 6.2.1, while the fit is plotted in Figure

6.2 with generated model and slop parameter distributions shown in Figure 6.3. In Figure

6.2, note the strong correlation between c1 and c2, as expected. Also, note that because

the pivot point-finding routine was used to minimize the correlation between bc1 and

mc1 , the confidence ellipse for these two parameters (top, center of Figure 6.3) is not

tilted, indicating the removal of correlation between them. Finally, also note in this figure

that the two slop parameters (σc1c2 and σc1) are also uncorrelated, again evidenced by a

non-tilted confidence ellipse (bottom, center).

4Note that I was able to run the scale optimization before finding the pivot point because fitting
scales are invariant of choice of pivot point, as they don’t affect the extreme scale limiting behavior of
slops, e.g. Trotter (2011).
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Figure 6.2.: Observed c1 vs c2 data from Valencic, Clayton, and Gordon (2004), Gordon et al. (2003), E.
Fitzpatrick and Massa (2007), and Clayton et al. (2015), plotted with linear TRK fit modeled
by Equation (6.4). Shaded regions indicate the 1−, 2− and 3σ slop confidence regions of the
model distribution, given best fit slop values of Table 6.2.1 and plotted according to footnote
18 on page 39.
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Figure 6.3.: MCMC-generated (§4.4.1) probability distributions for c1 vs. c2 (Equation (6.4)) model (top)
and slop/extrinsic scatter (bottom) parameters. Parameter confidence ellipses (center) with
1−, 2− and 3σ regions show joint posterior probabilities with respect to the parameters
plotted on either side. The pivot-point finding algorithm of §5.1 was used to remove correlation
between model parameters.

Table 6.1.: Best-Fit Asymmetric Gaussian Parameter Values For c1 vs. c2 Model (Equation (6.4))

Parameter Type Parameter Value
+1σ

Width
−1σ

Width

Model Parameters bc1 −0.9052 0.0350 −0.0376
mc1 −3.1519 0.0778 −0.0762

Pivot Point c
pc2
2 1.0247 . . . . . .

Slop Parameters σc1c2 0.05948 0.00135 −0.00148
σc1 0.1711 0.0270 −0.0263

Optimum Scale s0 0.28230 . . . . . .
Minimum Scale a 0.15332 . . . . . .
Maximum Scale b 0.44043 . . . . . .
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6.2.2. Fitting BH vs. c2

Trotter (2011) also reported that the bump height parameter BH ≡ c3/γ
2 is loosely

correlated with c2, as moderate values of c2 tend to have higher values of BH while

low or high values of c2 tend to have low BH, along Milky Way lines-of-sight. Trotter

parameterized this relationship with a “smoothly-broken linear” model of the form

BHc(c2;ϑm) = − ln
[
exp
{
−bBH

1 − tan θBH
1

(
c2 − cp1,BH

2

)}
+ exp

{
−bBH

2 − tan θBH
2

(
c2 − cp2,BH

2

)}]
,

(6.5)

where ϑm = {bBH
1 , θBH

1 , bBH
2 , θBH

2 } are the model parameters and {cp1,BH
2 , cp2,BH

2 } are the

pivot points of the model that determine the amount of correlation between bBH
1 and θBH

1 ,

and bBH
2 and θBH

2 , respectively5.

To fit this model to the dataset, I first ran the scale optimization algorithm of §4.3 to

determine the optimum fitting scale s0. Next, I ran the parameter correlation removal/pivot

point-finding algorithm of §5.1 to determine the pivot points cp1,BH
2 and cp2,BH

2 that minimize

the correlations between bBH
1 and θBH

1 , and bBH
2 and θBH

2 , respectively6. From here, I

determined the best fit model and (x−, y−)slop parameters ϑm = {bBH
1 , θBH

1 , bBH
2 , θBH

2 }
and (σBH

c2
, σBH), respectively using the Downhill Simplex method of §4.2 at s0. Finally, I

used the Adaptive MCMC and Bar-Lowering methods of §4.4.1 to sample the distribution of

the model and slop parameters, and compute their uncertainties, respectively. Furthermore,

for this fit I used priors on the slope angle parameters θBH
1 and θBH

2 to constrain the angles

of the line to specific quadrants (also in order to demonstrate the usage of priors with the

5To see the intuition behind this broken-linear parameterization, observe how for low c2, the model

approximately becomes linear, i.e. BHc(c2;ϑm) ' bBH
1 + tan θBH

1

(
c2 − cp1,BH

2

)
. Similarly, for high c2,

BHc(c2;ϑm) ' bBH
2 + tan θBH

2

(
c2 − cp2,BH

2

)
. As such, bBH

1 and bBH
2 are analogous to the intercept

parameters for two lines, while θBH
1 and θBH

2 are analogous to (the angles off of the c2−axis of) the slope
parameters.

6Note that the pivot point-finding algorithm of §5.1 and Algorithm 8 was only explicitly defined for
models with a single pivot point. As such, I modified the code to allow for models that have multiple pivot
points using a fairly straightforward generalization of Algorithm 8. Specifically, I used the MCMC-sampled
pairs of slope and intercept parameters (line 6 of Algorithm 8) to compute and weight samples from
successive distributions of possible pivot points (lines 8 through 17), in order to iteratively determine
optimal values for the two pivot points (lines 19 and 20).
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Table 6.2.: Best-Fit Asymmetric Gaussian Parameter Values For BH vs. c2 Model (Equation (6.5))

Parameter Type Parameter Value
+1σ

Width
−1σ

Width

Model Parameters bBH
1 1.9837 0.0054 −0.0057
θBH
1 4.5679 0.0016 −0.0015
bBH
2 2.4040 0.0008 −0.0008
θBH
2 −1.1344 0.0130 −0.0138

Pivot Points cp1,BH
2 −0.0867 . . . . . .

cp2,BH
2 1.3343 . . . . . .

Slop Parameters σBH
c2

0.1290 0.0037 −0.0039
σBH 0.4954 0.0077 −0.0081

Optimum Scale s0 0.28117 . . . . . .
Minimum Scale a 0.11816 . . . . . .
Maximum Scale b 0.94043 . . . . . .

TRK suite) in the form of

p(θBH
1 ) =

 U(π, 3π
2

) if θBH
1 ∈ [π, 3π

2
] ,

0 otherwise
p(θBH

2 ) =

 U(−π
2
, 0) if θBH

2 ∈ [−π
2
, 0] ,

0 otherwise ,

(6.6)

where U(a, b) indicates a uniform distribution with bounds a and b (note that these priors

do not in any way constrain the data itself).

The numerical results of this fit are given in Table 6.2.2, while the fit is plotted in Figure

6.4 with generated model and slop parameter distributions shown in Figure 6.5. Note

that because the pivot point-finding routine was used to minimize the correlation between

bBH
1 and θBH

1 , and bBH
2 and θBH

2 , the confidence ellipses for these two pairs of parameters

(top, center, and middle, center of Figure 6.5) are not tilted, indicating the removal of

correlation between these sets of parameters. Finally, also note in this figure that the two

slop parameters (σBH
c2

and σBH) are also uncorrelated, again evidenced by a non-tilted

confidence ellipse (bottom, center).

6.3. A Web-Based TRK Fit Calculator

Alongside with the development of the TRK suite source code, the other main project that

I undertook is the end-to-end development of a web-based calculator for running TRK fits,
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6. Applications and Examples

Figure 6.4.: Observed BH vs c2 data from Valencic, Clayton, and Gordon (2004), Gordon et al. (2003), E.
Fitzpatrick and Massa (2007), and Clayton et al. (2015), plotted with broken-linear TRK fit
modeled by Equation (6.5). Shaded regions indicate the 1−, 2− and 3σ slop confidence regions
of the model distribution, given best fit slop values of Table 6.2.2 and plotted according to
footnote 18 on page 39.
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Figure 6.5.: MCMC-generated (§4.4.1) probability distributions for BH vs. c2 (Equation (6.5)) model (top
and middle rows) and slop/extrinsic scatter (bottom row) parameters. Parameter confidence
ellipses (center) with 1−, 2− and 3σ regions show joint posterior probabilities with respect
to the parameters plotted on either side. The pivot-point finding algorithm of §5.1 was used
to remove respective correlations between model parameters of each linear ”leg” of the model
curve.
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Figure 6.6.: The data input step of the web-based TRK calculator with example data.

currently located at https://skynet.unc.edu/rcr/calculator/trk7. Easy to use, but

full of customization options, the goal of this website was to create a simple, user-friendly

introduction to the TRK statistic, including educational interactive visualization tools.

The first step of the web-based TRK calculator is to input the raw data, shown in Figure

6.6, where the user can give values for {xn, σx,n, yn, σy,n} with optional weights {wn}.
Next, shown in Figure 6.7, the user can plot the data with error bars in order to estimate

which model to fit to the data. The plot also offers various interactive tools, including the

ability to pan and zoom8.

The following step is then for the user to choose the model to fit the data to, shown in

Figure 6.8, and to provide an initial guess for the model and slop parameters for the

fitting algorithm. The website comes with six built-in models: linear, quadratic, cubic,

exponential, power law and logarithmic; the user also has the option to run the pivot-point

finding/de-correlation algorithm of §5.1 on applicable models.

The last step of the calculator is for the user to choose which algorithms, if any, to run in

addition to the regular likelihood-maximization downhill-simplex fitting of §4.2, shown

in Fig. 6.9. The user can choose to either provide a fitting scale s (with a default of

7Note that this is part of the website that also includes the two Robust Chauvenet Outlier Rejection
(RCR) calculators (see Maples et al. (2018)), that I am also the developer of (both the RCR source code
and webpages). Long term, I plan to develop a single standalone statistical suite, available in multiple
languages, that will bring together RCR, TRK, and other future statistical tools that I’ve developed, of
which this website will be part of the ecosystem of.

8This plot, as well as all other plots on the TRK and RCR webpages, were made with Python’s Bokeh
library, from the Bokeh Development Team (2018).
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6. Applications and Examples

Figure 6.7.: Example of plotting input data on the TRK calculator webpage.
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Figure 6.8.: Section of the TRK webpage where the user can choose which model to fit to their data.
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Figure 6.9.: Section of the TRK webpage where the user can determine which additional TRK algorithms
to run alongside basic fit.

s = 1.0), or run the scale optimization algorithm. The user also has the option to use the

MCMC algorithm of §4.4.1 to determine model parameter uncertainties; however, this is

a computationally intensive process, so I am still experimenting with the possibility of

expediting it. As shown, the total selected algorithm is displayed as a flow chart, with

bullet-points below explaining the various steps9.

With these steps completed, the user can now perform a TRK Fit, in the section shown in

Figure 6.10. After pressing the “Perform Fit” button and waiting for the algorithm to run,

the final model and slop parameters are displayed on the left, as shown (with the model

parameters ordered according to the functional form of the chosen model). If the scale

optimization algorithm was run, the optimum and extreme scales, (s0, a, b), respectively,

will also be displayed. The resulting fitted model curve is then plotted alongside the data,

including 1-, 2- and 3σ confidence regions described by the fitted slop parameters (see

Footnote 18 on page 39 to see how these regions are explicitly calculated).

9As shown, these bullet points also show section numbers; these correspond to the relavent sections of
our upcoming paper, Trotter, Daniel E. Reichart, and Konz (2020), that will introduce the TRK statistic
and some of its astrophysical applications in a peer-reviewed, journalistic context. The paper, currently
in preparation, will be submitted to the Astrophysical Journal, Supplement Series.
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Figure 6.10.: Output section of the TRK calculator webpage, showing the results of an example linear fit
(without model parameter uncertainty computation).
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7.1. A Scale Optimization Algorithm for Asymmetric

Uncertainties

Continuing from §5.2, the final consideration to be made involving the introduction of

asymmetric error bars and/or slop is the fit scale optimization algorithm described in §4.3.

Recall that in the symmetric case, this involves

1. determining the minimum scale s = a where σx → 0, and the maximum scale s = b

where σy → 0, and

2. determining the optimum fitting scale s0 ∈ [a, b] by iteratively solving Equation

(3.3).

However, in the asymmetric case there are two slop parameters along each dimension, so

determining, or even qualifying, the minimum, maximum and optimum scales is nontrivial.

I have attempted and/or posited a few potential methods of asymmetric scale optimization,

and tested the scale-dependent best fit behavior of asymmetric fits, but the results have

been inconclusive to date. As such, this issue remains as a future endeavor that will be

explored in a later work.

7.2. Support for N-dimensional Models

For any statistic, it is desirable to be able to fit models to data with multiple independent

(“x”) variables. I have considered the possibility of generalizing the TRK statistic to N − 1
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independent variables (so N dimensions total) such that each datapoint could have N

symmetric error bars, or up to 2N asymmetric error bars, and the model would have N

parameters describing slop/extrinsic scatter. However, there are a number of practical

issues that could make this leap difficult, or potentially intractable. First, the tangent-point

finding algorithm of §2.2.2 and §4.1, that is required to simply evaluate the TRK likelihood

of Equation (2.17), would require determining where some N−dimensional model curve

is tangent to an N−dimensional error hyperellipsoid, which would not only conceivably

greatly increase the computational power and possible issues with the method, but would

require a totally new algorithm to account for the arbitrary number of dimensions. Even

more fundamentally, the scale optimization routine of §4.3 would also have to be completely

revamped, as not only is it entirely based off of 2-dimensional principles and algorithms,

but the definition itself of fitting scale would have to change with addition of more

dimensions, as adding N dimensions means there are now N possible ways to scale the

dataset, described by N additional scale parameters. Overall, while an N−dimensional

TRK statistic and algorithm would be extremely useful, and practically the ultimate

general “worst-case” dataset model-fitting tool, developing it would likely prove to be

very challenging, if even possible.

7.3. Python Implementation

I developed the TRK suite in C++ due to the language’s portability, low-level nature,

and access to parallelization, to name a few reasons. However, Python is one of the most

popular and widespread languages used within data science, the natural sciences, and

other related statistically-based fields. Some of the most used model fitting algorithms

are found within the many scientific Python libraries, such as SciPy (e.g. Virtanen et al.

(2020)), and introducing the TRK suite to Python could make it accessible and useful to

many more people, and make it possible to integrate and use the TRK statistic with many

other Python codebases. As such, another long-term goal of this project is to develop/port

the TRK suite into a standalone Python library. This could be done in many ways, but

the main option I am currently considering is using SWIG (Simple Wrapper Interface

Generator of Beazley et al. (1996)) to wrap the C++ TRK code into Python, which
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I did at a basic level when developing the TRK calculator, as the website runs on a

Python-based framework.

75



Appendix A.

Additional Algorithm Listings

Listed below are various algorithms that did not need to be given explicitly in the main

text, but can be referenced here as needed.
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Algorithm 10: Downhill simplex evolution functions used in Algorithm 4 to
minimize −2 lnLTRK.

1 Initialize simplex evolution parameters (α, β, γ, δ) = (1, 2, 0.5, 0.5)
2 Function Expand

Input : Simplex ∆ with M+ 1 vertices vi
Output :Expanded ∆

3 Compute expansion point of vr, ve ≡ c+ γ(vr − c).
4 if χ2

e < χ2
r then

5 vM → ve
6 end
7 else
8 vM → vr
9 end

10 return ∆

11 Function Contract
Input : Simplex ∆ with M+ 1 vertices vi
Output :Contracted ∆

12 Compute contraction point vc, by using better of vM, vr.
13 if χ2

M−1 ≤ χ2
r < χ2

M then
14 Contract Outside:
15 vc = c+ β(vr − c)
16 if χ2

c ≤ χ2
r then

17 vM → vc
18 end
19 else
20 Shrink(∆) (See function below)
21 end

22 end
23 else if χ2

r ≥ chi2M then
24 Contract Inside:
25 vc = c+ β(vM − c)
26 if χ2

c < χ2
M then

27 vM → vc
28 end
29 else
30 Shrink(∆)
31 end

32 end
33 return ∆

34 Function Shrink
Input : Simplex ∆ with M+ 1 vertices vi
Output : Shrunken ∆

35 for i = 0, · · · ,M do
36 vi → v0 + δ(vi − v0)
37 end
38 return ∆
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Algorithm 11: Bracketing/Bisection-type method for determining maximum
fitting scale b for some model and dataset.

1 Function FindMinimumScale
Input :Model yc and dataset {xn, yn} with error bars {σx,n, σy,n}
Output :Maximum fitting scale b.

2 begin
3 Determine brackets (l, r) for max scale b:
4 Initialize bisection brackets l = s = 0, r = s = 1 and strial = s = 1
5 Note that in the actual code, a better strial is found from the algorithm for

finding a. σy(strial)← DownhillSimplex (s = strial)
6 Initialize step modifier α = 0.5× strial
7 if σy(strial) > 0 then
8 l = strial
9 rtrial = strial

10 σy(rtrial) =DownhillSimplex (s = rtrial)
11 while σy(rtrial) > 0 do
12 rtrial = rtrial + α
13 σy(rtrial) =DownhillSimplex (s = rtrial)
14 l = rtrial
15 end
16 r = rtrial
17 end
18 else if σy(strial) = 0 then
19 r = strial
20 ltrial = strial
21 σy(ltrial) =DownhillSimplex (s = ltrial)
22 while σx(ltrial) = 0 do
23 ltrial = ltrial − α
24 σy(ltrial) =DownhillSimplex (s = ltrial)
25 α = 0.5× α
26 r = ltrial
27 end
28 l = ltrial
29 end
30 Use bisection to determine b now that we have brackets (l, r):
31 btrial = (l + r)/2
32 σy(btrial) =DownhillSimplex (s = btrial)
33 while |l − r| ≥ tolerance1 AND σy(atrial) ≥ tolerance2 do
34 btrial = (l + r)/2
35 σy(btrial) =DownhillSimplex (s = btrial)
36 if σy(btrial) > 0 then
37 l = btrial
38 end
39 else if σy(btrial) = 0 then
40 r = btrial
41 end

42 end
43 return b = btrial
44 end
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Algorithm 12: Bisection-type method for determining optimum fitting scale s0
for some model and dataset with minimum and maximum fitting scales a and b.

1 Function FindOptimumScale
Input :Model yc and dataset {xn, yn} with error bars {σx,n, σy,n}, with

minimum and maximum fitting scale a and b.
Output :Optimum fitting scale s0.

2 begin

3 Initialize s
(1)
0 = (a+ b)/2

4 while
∣∣∣s(2)0 − s(1)0

∣∣∣ ≥ tolerance1 do

5 s
(1)
0 = s

(2)
0

6 Use bisection to determine s
(2)
0 given s

(1)
0 :

7 Initialize brackets l = a, r = b

8 s
(2)
0,trial = (l + r)/2

9 Rtrial = Equation (4.1) ←DownhillSimplex (s = s
(2)
0,trial)

10 while |l − r| ≥ tolerance2 AND |R| ≥ 0 do

11 s
(2)
0,trial = (l + r)/2

12 Rtrial = Equation (4.1) ←DownhillSimplex (s = s
(2)
0,trial)

13 Rl = Equation (4.1) ←DownhillSimplex (s = l)
14 if Rtrial ×Rl > 0 then

15 l = s
(2)
0,trial

16 end
17 else if Rtrial ×Rl < 0 then

18 r = s
(2)
0,trial

19 end

20 end

21 s
(2)
0 = s

(2)
0,trial

22 end

23 return Optimum scale s0 = s
(2)
0

24 end
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